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Abstract  

Increasingly frequent around the world, heat waves are affecting Canada, where their frequency and 

intensity are increasing with climate change. This threat weighs on the health of the population, as 

oppressive heat is associated with increased mortality and many health problems. The vulnerability and 

exposure of the population vary over time and space, placing certain groups at greater risk. The effects of 

heat waves on the health and well-being of communities are mostly modulated by people's ability to access 

resources, including adequate housing. The main objective of this project is to develop an interactive 

online mapping application that provides valid information on the geographical distribution of 

populations’ vulnerability and exposure in 156 urban regions of the country, specifying their intensity at 

the dissemination area scale. The tool is intended for professionals in the field while remaining accessible 

to the general public. Four indices were calculated (sensitivity, coping capacity, vulnerability, and 

exposure) based on socio-economic, demographic, proximity to services, and characterization of the built 

and natural environment data associated with the population’s vulnerability and exposure to extreme heat 

waves. A map of urban heat islands has also been produced.  

Résumé 

De plus en plus fréquentes à travers le monde, les vagues de chaleur n’épargnent pas le Canada, où leur 

fréquence et leur intensité augmentent avec les changements climatiques. Cette menace pèse sur la santé 

de la population alors que la chaleur accablante est associée à une augmentation de la mortalité et de 

nombreux problèmes de santé. La vulnérabilité et l’exposition de la population varient dans le temps et 

dans l’espace, faisant en sorte que certains groupes sont plus à risque. Les effets des vagues de chaleur 

sur la santé et le bien-être des communautés sont majoritairement modulés par la capacité des personnes 

à accéder à des ressources, notamment à un logement adéquat. L’objectif principal de ce projet est 

d’élaborer une application cartographique interactive en ligne fournissant des informations valides sur la 

distribution géographique de la vulnérabilité et de l’exposition des populations de 156 régions urbaines 

du pays en spécifiant, à l’échelle de l’aire de diffusion, leur intensité. L’outil est destiné aux professionnels 

du milieu tout en demeurant accessible au grand public. Quatre indices ont été calculés (sensibilité, 

capacité à faire face, vulnérabilité et exposition) à partir de données socio-économiques, démographiques, 

de proximité des services et de caractérisation de l’environnement bâti et naturel associé à la vulnérabilité 

et l’exposition de la population aux vagues de chaleur accablante. Une carte des îlots de chaleur urbains 

a également été réalisée. 
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1 INTRODUCTION 

1.1 PROBLEM 

Climate change is inevitable and can be observed globally (Masson-Delmotte et al., 2021). In 

Canada, the estimated warming rate for the 1948-2016 period was much higher than the global rate 

(1.7°C compared to 0.8°C) (Bush & Lemmen, 2019). The impacts of global warming are being 

strongly felt across the country, particularly with the increase in the frequency of extremely hot days 

(Zhang et al., 2019). Several factors exacerbate the problem of heat waves. Firstly, in urban areas, 

the heat island phenomenon aggravates the situation, as the temperature difference between certain 

sectors of the city, such as paved parking areas and rural and natural environments on the outskirts, 

can reach several degrees Celsius (Oke, 1987; Oke et al., 2017). In 2021, nearly three in four 

Canadians (73.7%) lived in one of Canada’s major urban centers (Statistics Canada, 2022a). 

Secondly, the country’s population is aging. According to the 2021 latest census data, the proportion 

of the Canadian population aged 65 and over was approximately 18.1%, or about one in five 

Canadians, and this proportion is expected to continue to increase in the coming years, reaching 

nearly 25% by 2031 (Statistics Canada, 2022e). Finally, the climate will continue to warm over the 

next few years, while by 2050, in certain regions of the country, the number of days with 

temperatures of 30°C or more could double, and by 2051-2080, some regions could observe more 

than 50 days a year where the mercury reaches 30°C (Climate Atlas of Canada, 2019). 

This threat weighs heavily on the population’s health, as extreme heat is associated with an increase 

in mortality (Gasparrini et al., 2015; Martin et al., 2012). Several studies show that extreme heat is 

associated with an increase in health problems, including the resurgence of respiratory and 

cardiovascular diseases and pathologies, as well as an increased number of syncope, periods of 

exhaustion, sunstroke, or heat stroke (Adam-Poupart et al., 2021; Hajat et al., 2010; Gough, W., 

Anderson, V., & Herod, K. 2016). In the summer of 2021, British Columbia recorded 619 heat-

related deaths. Of those, 93% occurred within the week of June 25 to July 1, during which 

temperatures in the village of Lytton reached a high of 49.6°C. (British Columbia Coroners Service, 

2022). 

Exposure and vulnerability to heat waves vary over time and across space, which leaves some 

groups at greater risk (Hajat et al., 2010, Basu et Samet, 2002). A study of the impact of the heat 

wave that affected the region of Laval (Quebec) from June 29 to July 5, 2018, showed that people 
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living in high-vulnerability areas were 1.5 times more likely to die than those living in less 

vulnerable areas (Centre intégré de santé et de services sociaux de Laval, 2019). 

The impact of heat waves on the health and well-being of individuals in a community depends 

predominantly on their access to resources— particularly adequate housing. Governmental and non-

governmental organizations, whether local, regional, or provincial, must contend with the social and 

economic repercussions of climate change (Berry, Schnitter et al., 2022). 

Geographic data are particularly useful when it comes to identifying and mapping vulnerability 

across time and space. They also contribute to a better understanding of the underlying processes of 

vulnerability, facilitating the development of more effective mitigation strategies. Decision makers 

and citizens alike benefit when knowledge gained from research is made more broadly available, 

thus making the decision-making processes, the setting of standards, and the establishment of 

procedures, at a local and regional level, more concrete. 

1.2 OBJECTIVE 

The main objective of this project is to develop an interactive online mapping application that 

provides accurate information about the geographic distribution of the vulnerability and exposure 

of major Canadian communities to heat waves while also specifying, for each geographic unit, the 

intensity of these weather events. In our view, such tools give the public meaningful and context-

appropriate information for a geographic analysis of the vulnerability of communities living in 

Canada’s major urban centres. With this information, public authorities will be better equipped to 

deal with heat waves and the health effects they can cause. 

The specific objectives are:  

• Produce a dasymetric map of the study area to represent only the different sectors of the 

ecumene (inhabited areas only).  

• Construct several mappable indices to estimate the different dimensions of vulnerability 

and exposure to heat waves, by considering the appropriate geographic scale so that the 

designated authorities can adequately develop various prevention and intervention 

measures.  
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• Produce an online application to allow the diffusion of the heat wave vulnerability and 

exposure indices produced for the 156 Canadian urban regions.  

To meet the project’s specific objectives, this report is divided into three chapters:  

• Dasymetric mapping 

• Construction and mapping of the indices  

• Production of a cartographic tool 

1.3 STUDY AREA 

The study area covered by our project consists of 156 urban regions: 42 census metropolitan areas 

(CMAs) and 114 census agglomerations (CAs) in Canada (Tables 1 and 2), representing 83.9% of 

the Canadian population, or over 31 million people (Statistics Canada, 2022c). The complete list of 

CMAs can be found in Appendix 1. The indicators were calculated at the dissemination area (DA) 

level, which is the smallest standard geographic area for which all Canadian census data are 

disseminated. A dissemination area (DA) is composed of 400 to 700 persons (Statistics Canada, 

2022d). The 2021 census year was chosen as it is the most recent census. Moreover, since we were 

seeking to represent the vulnerability of the population at the finest scale possible, i.e., the 

environment in which individuals live, a dasymetric mapping of the ecumene was applied to the 

dissemination areas to determine and only represent the inhabited zones (see Chapter 2) . 

Table 1: Study Area Description  

Country Type urban 
area 

Number of 
urban areas 

Population in 
2021 

Percentage of the population 
out of the total population of 
Canada 

Canada CA 114 3 753 167 10.1 

CMA 42 27 281 119 73.7 

Total 156 31 034 286 83.9 
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Table 2: Study Area Description by Province and Territory 

Provinces Type of 
urban area 

Number of 
urban areas 

Population  
in 2021 

Percentage of the 
population out of the 

total population per 
province 

Alberta  CA 13 385 351 9.0 

CMA 4 3 124 615 73.3 

Total 17 3 509 966 82.3 

British Columbia  CA 21 676 430 13.5 

CMA 7 3 801 318 76.0 

Total 28 4 477 748 89.5 

Prince Edward Island CA 2 97 015 62.9 

CMA 0 0 0.0 

Total 2 97 015 62.9 

Manitoba CA 5 131 034 9.8 

CMA 1 834 678 62.2 

Total 6 965 712 72.0 

New Brunswick CA 4 93 110 12.0 

CMA 3 396 940 51.2 

Total 7 490 050 63.2 

Nova Scotia  CA 4 205 801 21.2 

CMA 1 465 703 48.0 

Total 5 671 504 69.3 

Ontario CA 27 1 057 651 7.4 

CMA 16 11 742 189 82.6 

Total 43 12 799 840 90.0 

Quebec CA 25 817 111 9.6 

CMA 7 6 136 400 72.2 

Total 32 6 953 511 81.8 

Saskatchewan CA 8 180 382 15.9 

CMA 2 566 697 50.0 

Total 10 747 079 66.0 

Newfoundland and 
Labrador 

CA 3 57 029 11.2 

CMA 1 212 579 41.6 

Total 4 269 608 52.8 

Northwest Territories CA 1 20 340 49.5 

CMA 0 0 0.0 

Total 1 20 340 49.5 

Yukon CA 1 31 913 79.3 

CMA 0 0 0.0 

Total 1 31 913 79.3 
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2 DASYMETRIC MAPPING 

2.1 INTRODUCTION 

One of the major initial challenges of this project was to develop an accurate cartographic 

representation of the geographical distribution of residential environments. To better visualize these 

environments, our team outlined the dissemination areas using a file representing the settlement 

ecumene of the inhabited area for the whole country. In other words, we have produced a so-called 

dasymetric map.  

Dasymetric mapping is a type of mapping that allows inhabited areas to be delimited or weighted 

using additional data. This makes it possible to add precision to the various types of data used for the 

cartographic representation of population distribution or population density within an urban area, for 

example. Bhaduri et al. (2007), Linard et al. (2011), and Archila Bustos et al. (2020) describe 

dasymetric mapping as a method that is based on the assumed relationship between population density 

and different characteristics of the mapped territory, including the presence of bodies of water, 

topography (slopes), the presence of a road, etc. In fact, any feature or data providing information on 

the exact number of people at a specific point or a specific area can be used to refine disaggregated 

census data at fine scale over a territory. 

A number of map files exist to represent the ecumene in Canada, such as the ecumene produced by 

Natural Resources Canada or Statistics Canada’s population ecumene. However, for the majority of 

these files, the level of precision did not meet the minimum requirements of representativeness of 

the residential environment for our mapping needs. Therefore, we carried out a wide-ranging review 

of the literature on dasymetric mapping. This made it possible to identify and acquire a much more 

precise geospatial data layer (Global Human Settlement Layer – GHSL). It is a benchmark in terms 

of representing the distribution of the population over an area. Indeed, several authors identify this 

product as being one of the best built environment and population mapping products to date (Klotz 

et al., 2016; Florczyck et al., 2020). This layer was also thoroughly validated. Considering the 

conclusive results of the validation process, a methodology for producing a dasymetric layer from 

the GHSL layer was developed. 

A literature review inspired by systematic review methods was conducted in winter and summer 

2022. The main objective of this review was to guide the team in the steps to be taken to obtain 

geospatial data representing the geographic distribution of residential environments. The state of 

current knowledge and methods for fine-scale population mapping was highlighted. The literature 

https://open.canada.ca/data/en/dataset/3f599fcb-8d77-4dbb-8b1e-d3f27f932a4b
https://open.canada.ca/data/en/dataset/3f599fcb-8d77-4dbb-8b1e-d3f27f932a4b
https://www150.statcan.gc.ca/n1/pub/92-159-g/92-159-g2021001-eng.htm
https://ghsl.jrc.ec.europa.eu/ghs_buS2022.php
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review focused on two main concepts: the notion of settlement or human population, and the notion 

of mapping or mapping tools. The results of this review were then sorted in several stages to ensure 

that only relevant articles were retained to continue the project.  

A number of datasets representing the geographic distribution of the population were inventoried at 

this stage. Various characteristics specific to each dataset (spatial resolution, year of coverage, main 

feature represented, etc.) were identified. This approach enabled the team to make its choice and 

continue the process with the validation of the GHSL product.  

2.2 GHSL VALIDATION 

2.2.1 Methodology 

The data layer that was the subject of the validation process is the GHS BUILT C FUN E2018 

product. This layer is part of the latest version of the Global Human Settlement Layer project, which 

was made available online in June 2022. This project includes a set of datasets and tools available 

online free of charge online to assess human presence on the planet. The project is led by the 

European Commission’s Joint Research Centre. The validated layer identifies three functional 

classes of land use: unbuilt, built residential, and built non-residential (Schiavina et al., 2022). This 

characteristic is the main reason why the team chose this layer for the current project.  

The validation process began with a sampling of areas in the GHSL layer to check the consistency 

of land-use classes that are indeed currently occupied. The sampling study area was constructed in 

two stages. First, the GHS layer was cut to match the boundaries of major Canadian cities. Second, 

a one-kilometre buffer zone was generated around areas classified as built residential and built non-

residential to limit the number of sampling points in uninhabited areas. As a result, areas within the 

perimeter of major Canadian cities that are more than one kilometre from a pixel identified as a 

built area were excluded from the sampling area. 

Subsequently, following the recommendations of Olofsson et al. (2014),  a sampling plan stratified 

by city and land-use class was then drawn up to distribute 33,010 validation points across the study 

area. As it was desirable to be able to validate the accuracy of the different land cover classes, this 

sampling method was the most appropriate (Stehman, 2009). A seed of random points was scattered 

using a 6.7 km2 grid. One point per grid cell was generated and points not located in the extended 

residential zone (with a 1 km buffer zone) were then removed. The parameter of 6.7 km2 was chosen 

through an iterative process to obtain a total number of points (33,010) allowing good coverage of 
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the study area while respecting the time and labour resources available within the team. Of these, 

25,142 points were scattered over the entire area described, without class distinction. The additional 

7,868 points were added by oversampling only in built residential and non-residential areas (without 

the buffer zone) to enable better representation and assessment of settlements, considering that a 

large proportion of the study area is classified as unbuilt.  

The validation process was carried out using a web mapping application deployed on ArcGIS 

Online. The application efficiently compiled the data input of the five team members who were 

simultaneously mobilized for the validation. The study area was divided into sectors, which were 

allocated to the various members. For each point sampled, members compared the class indicated 

by the GHS data layer with observations made using satellite images. Information was entered for 

each sample point. A drop-down menu was used to select the land cover class observed on the 

satellite imagery and compare it with the class indicated by the GHS layer. These recordings made 

it possible to produce and analyze a confusion matrix, which represents the basis of a quantitative 

analysis in the validation of a geospatial layer (Strahler et al., 2006; Stehman, 2009). At the same 

time, we made a general observation of the GHS layer on the satellite image. The aim of this general 

observation was to identify errors outside the sample points. Not all errors outside the sample points 

were recorded, but some have been listed as additional points. For each point added at members’ 

discretion, they had to enter the GHS layer category, the satellite imagery observation category, and 

a brief explanation of the error observed. This additional step made it possible to produce a quality 

qualitative analysis of the GHS layer complementary to the confusion matrix. This approach is 

suggested by Strahler et al. (2006). 

At a technical level, it is important to bear in mind that certain aspects beyond the control of the 

research team may have led to biases in the results of the validation process. We identified two main 

sources of uncertainty. The first concerns the correspondence between the year of production of the 

satellite imagery and the year of production of the GHS data layer. In the cartographic application 

used for validation, the production date of the satellite imagery displayed varies based on the 

geographical sector and spatial resolution. The GHS layer includes data produced in 2018 only. 

Therefore, some of the identified errors may be caused by this chronological inconsistency. The 

second concerns a cartographic projection problem. Inaccuracy was introduced into the data owing 

to the different coordinate systems of the GHS layer (Mollweide [world] with WGS 1984 datum) 

and the point layer for validation (NAD 1983). When the spatial intersection between the two layers 

was initially performed, the correct projection transformations were not applied. This led to errors 

in the intersection result, causing some points to be associated with the wrong category in the GHS 
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layer. The problem is as follows: on the map, a point superimposes a GHSL class (built residential, 

built non-residential or unbuilt) which is not the same as the GHSL class indicated in the layer’s 

descriptive data. To solve this problem, a few steps had to be taken. First, the GHS layer was 

correctly converted to NAD 1983. We then performed a new spatial intersection between the GHS 

layer converted to NAD 1983 and the points layer (also in NAD 1983). Lastly, the results of the 

initial intersection and the new intersection were compared in order to identify and correct points 

containing erroneous information. Four hundred and sixty-eight points out of a total of 33,010 had 

to be corrected. Errors generated by the map projections also led to some shifts in the position of 

water bodies in some parts of the area. However, this error was marginal. No specific corrections 

were made, as the team felt that this error had no significant effect on the results of the validation 

process. 

Certain aspects linked to the human nature of the judgment made by those carrying out the validation 

also need to be taken into consideration. Olofsson et al. (2014) also explains this source of 

variability and bias in the results of any validation process. The main source of heterogeneity in the 

raters’ interpretations concerns the boundaries between the different classes identified by the GHS 

layer. Despite the use of decision criteria, zone boundaries generally remain more ambiguous than 

the interior of the various land-use class zones. At first glance, the identification of the GHSL non-

residential building class is less consistent than for the other class types. This necessarily leads to 

more uncertainty for the raters at the validation level when it comes to this land use class. To control 

for these possible biases and ensure the validity of the process, two interrater agreement tests were 

carried out (see 2.2.2 Statistical Analysis (Interrater Reliability and Agreement Test)). Also, as the 

sample was based on the occupancy classes of the GHS layer, some internal errors may have been 

induced. This approach may have made some errors more difficult for the raters to spot, since the 

GHS layer provides reference points even though it is what is being validated. 

The criteria for deciding how to classify were established during the group discussions, before 

returning to the initial interrater agreement test. Generally, any building of a residential nature 

(house, apartment building, campsite, hotel, etc.) was considered a residential building. This 

category also includes mixed-use buildings, such as those with one commercial floor and one 

residential floor. When it comes to roads, borders, and urban vegetation, there are a few well defined 

principles that inform decisions of which category to choose. Roads within residential areas, for 

example, are considered to be residential surfaces, since they form part of the same built and 

inhabited environment. In general, a surface is considered residential if it is surrounded by a 

residential environment but is not large enough (plus or minus one pixel) to contain another type of 
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environment. However, in the context of a more isolated residential building, the distance criterion 

of 10 m from the building was established. In other words, if the point sampled is located more than 

10 m from the building, the category chosen will correspond to unbuilt land. This same criterion is 

also applied to the margins of residential environments. The critical distance was set at 10 m, so as 

not to dwell on inaccuracies smaller than the layer resolution.  

In the case of borders, e.g., between residential areas, industrial zones, forests, vacant lots, etc., the 

10 m distance criterion applies in the same way as for roads. In the case of vegetation, if an urban 

park is larger than 10 m by 10 m, it is considered an unbuilt space. If the dimensions of the green 

space are less than 10 m by 10 m, the green space is considered to be integrated into the surrounding 

built environment (often residential). 

For built non-residential areas, the general 10 m distance criterion also applies. Any non-residential 

building or structure and its immediate surroundings (less than 10 m away) is considered to be a 

built non-residential area. 

As far as the unbuilt category is concerned, any element of the area corresponding to something 

other than buildings, such as vegetation, roads, mineral surfaces, crops, etc., is considered as such. 

There may be some ambiguity if we think of certain human structures that are not buildings in 

themselves, such as quarries, mines, port structures, and so on. In these cases, built structures have 

generally been considered as built non-residential areas to which the 10-m distance rule has been 

applied. 

2.2.2 Statistical Analysis (Interrater Reliability and Agreement Test) 

The validation process continued with a preliminary test to better define the parameters 

relating to the sampling plan and decision criteria and to assess interrater agreement between the 

five team members engaged for the validation. Two types of sampling (single-point and multi-point) 

were verified by separating the points to be validated in two separate geographical areas: Kingston, 

Ontario and Sherbrooke, Quebec. For the Kingston area, 20 multi-points (five points per location 

with an offset of 10 m and 20 m) were generated, while for the Sherbrooke area, 20 single points 

were generated. In both cases, 10 points were also added in the built areas identified by the GHS 

layer to ensure better representation of these sectors. Thus, a total of 140 points were validated. Five 

team members took part in the validation for this test and the whole process. Therefore, the aim of 

this interrater agreement test was to ensure consistency between the decisions of the individuals 

carrying out the validation. This is a statistical quantitative measure of the degree of consensus for 

a qualitative measure. Once the validation process had been completed, a second interrater 
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agreement test was carried out to check for bias due to interpretation in the validation of the sampled 

points. For this second test, a sample of 500 points located in the Saguenay CMA in Quebec was 

validated, once again, by the five team members. 

2.2.3 Results 

Overall, there was a high degree of agreement between the raters’ decisions (Fleiss’ and Light’s 

kappa = 0.85). However, agreement between various pairs of raters varies (kappas between 0.73 

and 0.96), indicating some variability in decision agreement between some team members. This 

exercise made it possible to clarify the decision criteria before beginning the validation of the GHSL 

layer, and consequently to achieve greater consistency between team members in carrying out the 

process. The test also enabled us to more precisely determine the time and human resources required 

to complete the entire process. Overall, consistency between the different raters’ decisions was still 

high and even slightly higher than in the first test (Fleiss’ and Light’s kappa = 0.87). Consistency 

was also more constant across all team members (kappas ranging from 0.83 to 0.93) for the various 

pairs of raters.  

Once the sampled points had been assessed one by one by the team, the information gathered during 

the process was processed statistically. A confusion matrix (Table 3) was generated to read and 

analyze the results of the validation process, i.e., the accuracy of the GHS layer by functional land 

use class type. 

The confusion matrix reveals that of the 6,110 observations in the residential building class, 5,956 

(97.5%) points were correctly classified by GHSL. However, GHSL identified a total of 8,803 points 

in this category. Of this total, 1,293 (14.7%) points were actually located in built non-residential 

areas and 1,554 (17.7%) in unbuilt areas. This suggests that GHSL detects and maps the vast 

majority of built residential areas and, to some extent, overestimates their presence. A number of 

elements are frequently identified incorrectly as built residential areas (these errors are described in 

greater detail in section 3.5.2 Additional Points).  

Of the 1,926 observations in the non-residential building class, 593 points (30.8%) were correctly 

recorded by GHSL. In addition, GHSL identifies a total of 695 points in this functional occupancy 

class, of which 10 (1.4%) are actually located in a built residential area and 92 (13.2%) in unbuilt 

spaces. It seems that GHSL is unable to recognize a relatively large proportion of built non-

residential areas. In other words, the GHSL layer neglects to index some of these environments and 

underestimates their presence. There also seems to be some confusion between built non-residential 

areas and unbuilt areas within the GHS layer. These various remarks about the class of built non-
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residential environments were raised by team members even before the validation results were 

analyzed, as indicated in the sources of uncertainty. The major problem observed in identifying this 

class is that the borders of this type of environment are mostly identified as a built residential 

environment, doubtless owing to the characteristics of the ground surface. This error contributes to 

both the phenomenon of overestimation of the built residential environment and the underestimation 

of the built non-residential environment. 

In the unbuilt functional class, of the 24,974 points classified as such by observations, GHSL lists 

23,328 (93.4%) correctly. At the GHSL level, a total of 23,512 points are identified in the unbuilt 

class. Of these, 144 points (0.6%) are classified as built residential and 40 (0.2%) as built non 

residential. GHSL performs better than the other two classes when it comes to identifying this 

occupancy class, which is to be expected given that the ground characteristics of this class differ 

more from the two built classes than the two built classes do from each other.  

Validation analyses revealed substantial agreement between what is represented cartographically by 

the GHSL layer and field observations (kappa = 0.769). Generally, GHSL and field observations are 

the same for 90.5% of validated points. Interpretation of the confusion matrix reveals that the errors 

in GHSL mainly concern the distinction between built residential (overestimated) and built non-

residential (underestimated).  

Table 3: Confusion matrix for the GHSL data validation analysis 

 GHSL 

Built 

residential 

Built non 

residential 

Non 

built 

Total 

Observations Built residential 5956 10 144 6110 

Built non residential 1293 593 40 1926 

Non built 1554 92 23 328 24 974 

Total 8803 695 23 512 33 010 

 

Additional points added manually by the raters during the validation process identify errors noted 

while browsing the GHS layer. Therefore, these are errors outside the sampled points. However, the 

analysis of these additional points may provide an insightful perspective to explain and characterize 

GHS layer errors also in the sample of points, considering that the majority of errors have a 

repetitive nature. A qualitative analysis was carried out to read and analyze the additional points. 

Based on the comment field and the satellite imagery category field, a classification by theme or 



12 
 

type of error was drawn up (Table 4). Each additional point was then associated with a theme based 

on its descriptive data.  

Seventeen themes characterize the 4,210 additional points. The source of each type (theme) of error 

is a source of confusion in GHSL, either between built and unbuilt environments, or between built 

residential and built non-residential environments (Res-NRes). In this respect, 61.7% of the errors 

recorded were due to confusion between the Res-NRes built classes, while the remaining 38.3% of 

the errors recorded were due to confusion between the unbuilt and general built classes. The higher 

proportion of errors attributable to GHSL differentiation of the built residential environment from 

the built non-residential environment is consistent with the results of the sample point validation.  

The various themes can sometimes be used to identify specific and problematic elements in the 

identification of the correct functional land use class, and sometimes only to indicate an error.  

For errors originating in the distinction between built residential and built non-residential, more 

than half of the points recorded (2,160) indicate a non-residential building incorrectly identified as 

residential. The presence of certain specific structures (port, rail and energy structures, warehouses, 

and storage yards) and visible patterns (built non-residential area) in the GHS layer may explain 

this. The reverse of this situation (residential building identified as non residential) also occurs, 

albeit to a lesser extent (88). 

For errors originating in the distinction between unbuilt and built, the elements identified as causing 

confusion are rock outcrops (11), a certain type of vegetation (58), open environments and exposed 

mineral soil (176), quarries, mines, and agricultural fields (298), and asphalt surfaces (398). These 

types of ground elements can cover large areas. As a result, their misidentification affects the quality 

of GHSL data to some extent. Corrections were made in order of priority, especially as the difference 

between the built and unbuilt environment is greater than between the built residential and non-

residential environment. 
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Table 4: Thematic analysis of errors listed in the validation of the GHSL data. 

Theme Error Source Frequency 

Relative 

frequency 

(%) 

Rock outcrops/rocks Non built 11 0.3 

Non residential built perimeter Res-NRes 11 0.3 

Residential buildings identified as a non built surface  Non built 14 0.3 

Non built surface identified as a non-residential building Non built 31 0.7 

Non residential buildings identified as a non built surface Non built 38 0.9 

Port structures Res-NRes 58 1.4 

Vegetation Non built 58 1.4 

Warehouses and storage yards Res-NRes 78 1.9 

Railway structures Res-NRes 78 1.9 

Residential buildings identified as non residential  Res-NRes 88 2.1 

Energy structures Res-NRes 123 2.9 

Open areas and mineral soil Non built 176 4.2 

New residential developments Non built 253 6.0 

Quarries, mines, and agricultural fields Non built 298 7.1 

Non built surface identified as a residential building  Non built 337 8.0 

Asphalt surfaces Non built 398 9.5 

Non residential buildings identified as residential  Res-NRes 2160 51.3 

TOTAL - 4210 100 

2.3 DASYMETRIC MAPPING 

2.3.1 Methodology 

After a conclusive validation process, the team decided to go ahead with the use of GHSL data. 

However, these were not used in their raw form. A chain of geoprocessing operations transformed 

the GHSL data to produce a layer that met specific mapping needs,  while avoiding highlighting 

certain gaps in the GHS layer.  

The two GHSL built classes (residential and non-residential) were selected as the basis for our 

residential environment mapping approach. Even though retaining built non-residential areas can 

be a source of inaccuracy in the mapping of residential areas, certain factors justify this choice. One 

factor is that the validation highlighted certain shortcomings in the distinction between the built 

residential and the built non-residential environment within the GHSL layer. Using both functional 

classes, the area covered by our mapping will necessarily be larger than the actual area covered by 

residential environments. Nonetheless, this overestimation bias will be due to this choice and not to 
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a recurring error in the base data. This procedure was deemed preferable in order to limit the 

omission of certain settlements. However, as the accuracy of our population layer is important, 

dissemination block areas with no residents were removed to avoid unnecessarily overestimating 

the presence of residential areas. Therefore, built non-residential areas located in inhabited 

dissemination blocks have been preserved. A second factor justifying our methodological choice 

concerns the aesthetics of the final layer. The more extensive the base data, the more continuous the 

final layer, which is visually desirable for cartographic representation.  

The geoprocessing chain to be applied to the GHSL data was established through an iterative 

process. Using the methodological information on dasymetric mapping data and methods gathered 

in the literature review, a number of geoprocessing and sequencing operations were tested in 

succession. Lastly, a processing chain inspired by the cartographic methodology of the Vulnerability 

Atlas produced the most satisfactory map layers according to the team’s visual assessment (Figure 

1) (Barette et al., 2018). 

This chain is divided into four main geoprocessing groups. The first group (iteration of tessellation 

files) takes the tessellation files one by one, i.e., a hexagonal grid of 10,000 m2 in our case, 

previously produced and sorted by a Python script for each of the 156 major Canadian cities making 

up our study area. These files correspond to a basic grid covering the entire extent of the CMAs, 

with no consideration, at this stage, for the location of the built areas identified by GHSL. The 

iteration subsequently allows us to take each of the files associated with the various CMAs and pass 

them individually, but automatically, into the set of processing groups. Owing to processing time 

issues, the 156 files were not all processed at once, but rather in sub-groups corresponding to the 

Canadian provinces.  

The second group (tessellation processing) refines the general framework of our dasymetric layer 

by integrating GHSL data. At this stage, only tessellation cells touching (intersecting) a built 

residential or non-residential area are retained for vertex extraction. To simplify geoprocessing and 

reduce processing times, the GHS layer, initially retrieved in raster format, was converted to a 

polygon vector layer. Extracting the vertices has enabled us to produce a simplified overall grid with 

more natural boundaries (elimination of hexagonal shapes). This simplification (reducing the 

number of vertices in mapped polygons) is an aesthetic choice, but also, and above all, a technical 

one. As the layers are used and integrated into web mapping, one of the major challenges is display 

speed. Therefore, reducing the complexity of the layer is critical to increasing display speed.  
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The third group (TIN processing) contains all the steps required to simplify the adjusted framework 

of the hexagonal grid. To do so, a triangulated irregular network (TIN) was produced from the 

vertices extracted by the processing of the second group. Once the TINs and TIN triangles have 

been produced, the perimeter of each triangle is calculated. A number of trials were carried out to 

determine a threshold for the perimeter of the triangles to be preserved. The logic of this step is that 

smaller triangles are generated in the inhabited built raster that is the subject of our mapping, since 

the points are closer together. The triangles between the zones of interest zones are necessarily larger 

or longer, since the spacing between the points used to create the TIN is greater. Triangles with a 

perimeter greater than 350 m have been removed from the layer so that only the sectors under study 

are represented using triangles. 

The fourth and final group of processes (addition of census data and finalization of the layer) 

allowed us to integrate some final details and modifications into the layer. It was at this stage that 

the uninhabited dissemination blocks were removed from the layer produced. Smoothing treatments 

were applied to improve the visual appearance of the final dasymetric mapping product. The final 

production stage involves integrating the dissemination area boundaries to join the various indices 

produced by the team to the dasymetric cartographic layer in the project’s perceived cartographic 

applications. 
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Figure 1: Geoprocessing Model to Produce the Dasymetric Layer. 

2.3.2 Results 

Dasymetric mapping was first produced by the CMA. As the processing model is the same for all 

of Canada, the final visual product may vary according to the context and configuration of the CMA, 

or even the mapped area of a CMA. The Figure 2 shows the asymmetrical layer produced in four 

sectors in different CMAs. The files for the 156 CMAs were then merged to create a layer covering 

all of Canada (within the study area). 
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Figure 2:Results of the cartographic representation of the residential areas (dasymetric layer). (A) Calgary, 

Alberta sector. (B) Toronto, Ontario sector. (C) Québec city, Québec sector. (D) Halifax, Nova Scotia sector. 

2.4 DISCUSSION 

The dasymetric maps produced will have a scope that will be able to go far beyond the current 

project. As mentioned, no geospatial data is currently available for Canada representing residential 

living spaces at such a fine scale. These maps will be made publicly available via geospatial data 

portals for reuse in other projects and research where an accurate representation of population 

distribution is relevant or even essential.  

Dasymetric maps could also be improved in the future. The map production method could be 

reproduced with new, more accurate data. For example, if a new generation of GHSL products is 

released with certain corrections, the dasymetric maps produced with this update would potentially 

be more representative of the geographic distribution of the population in major Canadian cities.  
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2.5 CONCLUSION 

In short, after discovering the GHS layer in the scientific literature, a comprehensive validation 

process was implemented by the team to ensure its quality. The conclusive results from the 

validation allowed the team to move forward with the use of this layer to better represent the 

geographical distribution of the population of the area under study. Nonetheless, to improve the 

visual representation and correct certain shortcomings of the GHS layer, the team developed a 

cartographic processing chain to produce a dasymetric map better suited to the project’s needs.  
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3 BUILDING AND MAPPING INDICES  

3.1 INTRODUCTION 

The geographical analysis of the vulnerability and exposure of populations fosters a better 

understanding of territorial issues and makes it possible to design better impact mitigation strategies. 

In recent years, the assessment of heat wave vulnerability has progressed considerably, inspiring 

various adaptation and development strategies at the local, regional, and national levels. Studies on 

the subject have identified population density, ethnicity, socio-economic status, characteristics of 

the built environment, gender, and age as characteristics of social vulnerability. It goes without 

saying that the location of the dwelling where people live can be a predominant factor in tempering 

the protective capacity it provides to cope with the onset of an extreme heat wave. This section will 

list its specific objectives and then present an overview of the literature review on heat wave 

mapping and exposure. It will also describe the methodology used by our team to map the 

vulnerability and exposure of Canadian households in large cities to the extreme heat wave 

phenomenon. Following the example of a prior project (Barrette et al., 2018) our team adopted an 

indicator-based mapping approach to spatially represent the phenomenon being studied. Four 

indices have been calculated for the current project. 

3.2 OBJECTIVES 

The main objective is to map the vulnerability and exposure to extreme heat waves of populations 

living in housing located in 156 urban regions across Canada. The specific objectives include: 

• Defining the concept of vulnerability and the theory behind it; 

• Developing a methodology for selecting and creating indicators of sensitivity, coping 

capacity, vulnerability, and exposure to extreme heat waves; 

• Mapping and categorizing sensitivity, coping capacity, vulnerability, and exposure to 

extreme heat waves in 156 Canadian urban regions. 

3.3 CONCEPTUAL FRAMEWORK AND LITERATURE REVIEW 

The starting point for the project was the conceptual framework and literature review of the Atlas 

of the Vulnerability of the Quebec Population to Climate Hazards by Barrette et al. (2018). Some 

impressive research work was carried out between 2010 and 2018. The information gathered 
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provided a solid basis for the start of this project. Nevertheless, we needed to update our knowledge 

to be able to incorporate the most recent studies. The following four databases were queried using 

keywords: GeoBase, Elsevier, PubMed, and Web of Science. Around a hundred scientific articles 

published between 2017 and 2022 were selected, based on relevance and similarity to the context 

being studied. Interestingly, only a few of the selected articles focus on Canada (Krstic et al., 2017; 

Ho et al., 2018; Yu et al., 2021). We also consulted publications from the grey literature to complete 

the portrait of the phenomenon. Most of these originate from public or government bodies. The 

following sections summarize the information consulted.  

3.3.1 Relevance of the Vulnerability Index 

A vulnerability index can be used to identify vulnerable populations and areas exposed to heat (Niu 

et al., 2021). The level of vulnerability varies across time and space and according to the populations 

who live there (Wolf et al., 2015). A vulnerability index can be used as a decision-making tool. 

Identifying the populations and areas most vulnerable to heat enables resources to be allocated 

where prevention and intervention needs are greatest (Bao et al., 2015). In recent years, 

epidemiological studies have demonstrated the effects of heat on human health (Santamouris, 2021) 

and identified the population and environmental characteristics associated with them (Ellena et al., 

2020). The results of epidemiological studies also affect the choice of indicators for the vulnerability 

index (Liu et al., 2020). 

3.3.2 Conceptual Framework 

The choice of conceptual framework plays a fundamental role in the creation of the vulnerability 

index and the selection of indicators (Cheng et al., 2021). There is no consensus on the choice of 

conceptual framework (Li et al., 2022), but two of them appear more frequently in the scientific 

literature. Population vulnerability is a conceptual framework described by Cutter et al. (2003) and 

the Intergovernmental Panel on Climate Change (IPCC) (Parry et al., 2007), according to which 

vulnerability is the sum of sensitivity, exposure, and adaptive capacity. The risk triangle as described 

by Crichton (1999) is another conceptual framework which explains that risk equals hazard, 

exposure, and vulnerability. That same conceptual framework can be interpreted in different ways, 

especially in terms of the choice of indicators (Li et al., 2022). For example, economic status and 

level of education are considered indicators of sensitivity by Zhang et al. (2018), but as indicators 

of adaptive capacity by Mallen et al. (2019). 
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3.3.3 Choice of Indicators 

The local situation is the most decisive factor in the selection of indicators. The characteristics of 

the population and the environment that contribute to vulnerability can vary from one area to 

another. For example, the vulnerability index calculated by Nayak et al. (2018) in the state of New 

York places particular emphasis on racial inequalities. Indicator selection is also affected by data 

availability and the subjective judgment of the research team (Li et al., 2022). In the majority of 

scientific articles, indicators are used to represent the demographic and socio-economic 

characteristics of the population (age, economic status, social isolation, level of education, ethnicity, 

unemployment, housing conditions, air conditioning, language skills, gender, etc.), the health of the 

population (pre-existing medical conditions, mental disorders, disability, access to healthcare 

facilities, etc.), and the characteristics of the natural and built environment (land surface 

temperature, air temperature, vegetation cover, humidity, air quality, topography, land use, land-use 

density, surface imperviousness, etc.). Very few studies include qualitative variables among their 

indicators. However, the article by Cheng et al. (2021) highlights the answers to a questionnaire on 

residents’ habits during extreme heat episodes in the construction of their vulnerability index. 

3.3.4 Index Composition 

The research team needed to select the conceptual framework and indicators and then determine the 

weighting of each vulnerability indicator. The higher an indicator’s weighting in the equation, the 

greater its impact on vulnerability. In the scientific literature, vulnerability is calculated using 

various weighting methods. Sometimes, a number of these methods are combined for a single index 

(Li et al., 2022). The most popular method is principal component analysis (PCA) (Azhar et al., 

2017; Chen et al., 2018; Mendez-Lazaro et al., 2018; Nayak et al., 2018; Guo et al., 2019; Hulley 

et al., 2019; Janicke et al, 2019; Mallen et al., 2019; Zuhra et al., 2019; Alonso and Renard, 2020; 

Conlon et al., 2020; Dong et al., 2020; Houghton and Castillo-Salgado, 2020; Jagarnath et al., 2020; 

Song et al., 2020; Zheng et al., 2020). This statistical technique is particularly useful when there is 

a large number of indicators, since PCA allows for them to be grouped together and reduces the 

analysis dimensions. The equal weights method is another method in which each indicator is 

assigned the same weight, since their contribution to vulnerability is assumed to be the same 

(Christenson et al., 2017; Liu et al., 2020). Several studies include arithmetic (adding, subtracting, 

dividing, and/or multiplying the value of each indicator) (Ho et al., 2017; Koman et al., 2019; 

Estoque et al., 2020; Maragno et al., 2020; Turek-Hankins et al., 2020). The analytic hierarchy 
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process, which is less frequently used, allows weights to be assigned based on the experience and 

judgment of a panel of experts (Apreda et al., 2019; Tran et al., 2020).  

3.4 METHODOLOGY 

Four indices were created for this project: sensitivity, coping capacity, vulnerability, and exposure. 

3.4.1 Sensitivity Index 

3.4.1.1 Choice of variables 

The literature review presented in section 3.3 identified the most relevant variables for the 

sensitivity index. Remember that sensitivity is defined as “an intrinsic condition of an element 

(community, organization, etc.) that makes it particularly vulnerable” [translation] (ADEME, 2013, 

p. 7). Various conditions can make a population more susceptible to consequences during a heat 

wave, but above all, it is the combination of these conditions that will cause the most impact. We 

need to integrate information on the socio-economic status and the quality of the built environment 

to gain a more complete picture of sensitivity. This information must have the same impact on the 

index, i.e., measure only the negative aspect of vulnerability. A total of 12 variables were included 

in the selection (Table 5). This choice was also influenced by data availability. All variables are 

taken from Statistics Canada’s 2021 Census of Population. It is the only database that provides 

reliable information at various geographic scales for all of Canada. The statistical unit used is the 

dissemination area (DA). This is the smallest geographic area for which all census data is 

distributed, with a population of between 400 and 700.  
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Table 5: Sensitivity Index Variables 

 

3.4.1.2 Variable Description  

a) Proportion of Elderly (≥ 65 years old) and Children (≤ 4 years old) (%) 

Young children and the elderly are part of the population with low autonomy. Additional resources 

are needed to take care of them during a heat wave, since they are not always able to do so 

themselves. The 0–4 age group and those aged 65 and over are generally more sensitive to prolonged 

exposure to heat, as they are less effectively able to thermoregulate. Elderly people are even more 

fragile as a result of chronic illness, medication, and loss of independence. The two age groups are 

calculated in the same variable so as not to cancel out their presence, which often varies in opposite 

directions. 

b) Proportion of People with No Certificate, Diploma, or Degree (%) 

Education plays a multidimensional role in vulnerability. Highly educated people have a better 

economic status, particularly due to higher-paying jobs. This stability provides them with more 

resources to prepare for and respond to a heat wave. Conversely, a low level of education impedes 

the ability to understand risk information. This lack of understanding will negatively impact the 

level of preparation. 

Dimensions Sub-dimensions Variables 

Sensitivity 

(socio-

economic) 

Demography Proportion of elderly (≥ 65 years old) and children (≤ 4 years old) 

(%) 

Instruction Proportion of people with no certificate, diploma, or degree (%) 

Immigration et 
citizenship 

Proportion of recent immigrants (%) 

Proportion of people who don't know either official languages 

(%) 

Household composition 

and characteristics 

Proportion of people living alone (%) 

Proportion of single-parent families (%) 

Proportion of rented dwellings (%) 

Income and economic 

activities 

Prevalence of low income based on the Low-Income Measure 

after tax (%) 

Proportion of renter households spending 30% or more of income 

on shelter costs (%) 

Sensitivity 

(geographic) 

Built environment Proportion of dwellings in need of major repairs (%) 

Proportion of apartments in a building that has five or more 

storeys (%) 

Proportion of dwellings built before 1980 (%) 
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c) Proportion of Recent Immigrants (%) 

Adapting to a new country takes time. New immigrants face many challenges, such as learning 

about a new culture and getting their bearings. Consequently, they may not be aware of local hazards 

or available information and resources. Cultural differences and language barriers affect the way 

people prepare for and respond to risks. Immigrants may also have other vulnerability factors, such 

as income level, size of social circle, or tendency to reside in high-exposure areas. 

d) Proportion of People Who Do Not Know Either Official Language (%) 

Not speaking an official language can be a true danger during a heat wave. Language barriers hinder 

access to information and understanding of awareness or warning messages. As a result, people may 

not take on the correct protective behaviors and may further expose themselves to the heat.  

e) Proportion of People Living Alone (%) 

Living alone means less contact with the outside world, both in terms of information and of family 

and friends. Social isolation and lack of communication increase the risks during a heat wave, as 

the person is alone to look after themselves. 

f) Proportion of Single-Parent Families (%) 

Single-parent families are often limited financially, as the child’s needs are met by one income. As 

a result, they have limited resources to prepare for and respond to a heat wave. The parent must 

assume all the responsibilities alone and take care of the other members of the family. 

g) Proportion of Rented Dwellings (%) 

The presence of rented units is generally an indicator of low income. Being a tenant suggests that 

these individuals have fewer financial resources than homeowners. Tenants often have little control 

over their homes, which limits their ability to install appropriate heat protection. 

h) Prevalence of Low Income Based on the Low-Income Measure, after Tax (%) 

Individuals with low income have limited resources to prepare for and respond to a heat wave. For 

example, they are less likely to have air conditioning, stay informed, and be in touch with a broad 

social network. This segment of the population often lives in the most at-risk areas, where housing 

is older and in poor condition. 
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i) Proportion of Renter Households Spending 30% or More of Income on Shelter Costs (%) 

Similar to the explanations for the previous variable, renter households that spend 30% or more of 

their income on housing do not have much flexibility to absorb the economic impact of a crisis. This 

statistic is a useful benchmark for housing affordability, though it should be noted that a household 

could have a very high income or choose to put more money down on its home than on other assets. 

j) Proportion of Dwellings in Need of Major Repairs (%) 

According to Statistics Canada (2022b), “The ‘major repairs needed’ category includes dwellings 

needing major repairs such as dwellings with defective plumbing or electrical wiring, and dwellings 

needing structural repairs to walls, floors or ceilings.” Infrastructure in need of repair is more 

vulnerable to heat. This variable gives an overview of the condition of housing stock. Note that this 

is a subjective figure, since it is assessed by each respondent based on their knowledge of the 

subject. The assessment may be over- or underestimated, as it was not carried out by a professional. 

However, this variable is still interesting because it is also tied to the economic factor. As a general 

rule, a high income means a home of adequate quality. For tenants, there may be a lack of control 

or motivation in relation to repair issues in a unit.  

k) Proportion of Apartments in a Building That has Five or More Storeys (%) 

Larger buildings are exposed to more solar radiation and accumulate more heat. Indoor temperatures 

are higher, especially on the upper floors. People living in this type of dwelling face a greater risk 

of extreme heat. 

l) Proportion of Dwellings Built Before 1980 (%) 

In general, newer infrastructure is less vulnerable. Knowing the building’s year of construction 

makes it possible to determine the construction standards in effect at that time. Therefore, it is a 

proxy variable that makes it possible to estimate the physical and structural aspects of buildings’ 

vulnerability to heat. The year 1980 is relevant, as it corresponds to the introduction of the first 

energy-saving measures in the National Building Code of Canada.  

3.4.1.3 Creating the Sensitivity Index 

3.4.1.3.1 Data Downloading and Preparation 

Given that the sensitivity index variables come solely from the 2021 Census of Population, it was 

simpler to use the cancensus package to download the data directly into the R software. A total of 
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24 variables were downloaded for all of Canada at the dissemination area (DA) level (Table 7). 

These data were used to calculate percentages for 10 of the 12 index variables. However, the 

incidence of low income based on the Low-income measure, after tax (%) and the proportion of 

renters spending 30% or more of household income on housing (%) are only available as 

percentages. Statistics Canada does the calculation, and we cannot access the raw data, unlike the 

other variables in the index. A selection was then made from data for all of Canada, retaining only 

census metropolitan areas (CMAs) and census agglomerations (CAs). The number of DAs dropped 

from 57,932 to 45,089. Since raw census data are rounded to preserve the confidentiality of 

respondents, some DAs may have values higher than 100% when calculating percentages. DAs 

whose values were greater than 100% were simply replaced by the value 100. Since our project 

concerns Canadian communities, DAs with a population equal to 0 were removed from the sample. 

This caused the removal of 255 DAs. One hundred and eighty-seven DAs also had missing values 

for a number of our variables, which were also removed. The sample now comprises 44,647 DAs. 

Information was missing for almost 10,000 DAs at the time of data upload. Rather than remove 

them from our sample, we used an imputation process to assign replacement values to missing 

values. We chose the missMDA package in R for the operation. After imputation, some 30 DAs 

showed a value below 0, which was manually replaced by 0. 

3.4.1.3.2 Principal Component Analysis 

Once data preparation was complete, we could proceed with the principal component analysis 

(PCA). Remember that PCA is a factor analysis used to study the relationships between different 

variables, to group the variables into components and to create a hierarchy between the components 

with the aim of explaining a phenomenon (Stafford and Bodson, 2006). In other words, PCA 

produces a kind of synthesis between correlated variables. PCA reduces the number of variables 

thanks to the correlation patterns between them (Durand, 2003; Fernandez et al., 2016). Because 

the number of variables is decreased with PCA, it reduces redundancy while minimizing the loss of 

information contained in the initial variables. Each component explains part of the total variance of 

the variables (Stafford and Bodson, 2006). In preparation for the analysis, it was decided that our 

sample of 44,647 DAs would be split by province and territory (Table 6). Preliminary tests showed 

that PCA on DAs across Canada mitigated local variability. Eleven new samples were created using 

the sensitivity index data to better represent the situation in each province. Because PCA requires a 

minimum of five observations per variable (Osborne and Costello, 2004), the Northwest Territories 

and Yukon were included in the same sample. With 12 variables for the sensitivity index, the sample 
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size must be at least 60 DAs. Combining the Northwest Territories and Yukon makes a total of 69 

DAs. In addition, these are the two northernmost territories, which face similar climatic challenges. 

Table 6: Number of Dissemination Areas Per Province or Territory 

Province or territory Number of 

dissemination 

areas 

Alberta 4613 

British Columbia 6396 

Prince Edward Island 169 

Manitoba 1430 

New Brunswick 829 

Nova Scotia 1044 

Ontario 17 678 

Quebec 10 784 

Saskatchewan 1194 

Newfoundland and Labrador 441 

Northwest Territories 35 

Yukon 34 

 

PCA hypotheses include correlation matrix testing, Bartlett’s test of sphericity, and the 

Kaiser-Meyer-Olkin (KMO) test (Pett et al., 2003). The PCA calculation highlights the components 

that explain 100% of the variance. In order for the analysis to be of interest, we needed to keep only 

the components that were significant. There are various ways of selecting the number of components 

to retain. The most widely used criterion is based on the eigenvalue. The higher the eigenvalue of a 

component, the more it explains a significant proportion of the total variance. By convention, all 

components with an eigenvalue greater than 1 are considered significant (Bourque et al., 2006). 

3.4.1.3.3 Calculation of the Sensitivity Index 

Running the PCA enabled us to create new synthetic components from our data. Once we had 

decided on the number of relevant components to be retained, a score was assigned to each DA. For 

each component, scores were weighted by the proportion of variance associated with them to 

provide a more representative result. Lastly, the weighted scores were added together to produce 

the sensitivity index. 
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Table 7: Calculation of the Sensitivity Index Variables 

Variable name Abbrevia

tion 

Calculation 

Proportion of elderly (≥ 65 years old)  and 

children (≤ 4 years old) (%) 

AgeSens Population aged between 0 et 4 years + Population aged 65 years and over  
X 100 

Total population by age groups 
 

Proportion of people with no certificate, 

diploma, or degree (%) 

SansDpl Population with no certificate, diploma, or degree  
X 100 

Total population aged 15 years and over by highest certificate, diploma, or degree  
 

Proportion of recent immigrants (%) ImmiRcn Population having immigrated between 2016 and 2021  
X 100 

Total population by immigrant status and period of immigration  
 

Proportion of people who don't know either 
official languages (%) 

LangOff Population speaking neither French nor English  
X 100 

Total population by knowledge of official languages 
 

Proportion of people living alone (%)  PrSeul Households composed of one person  
X 100 

Total private households by household size 
 

Proportion of single-parent families (%) FamMono Singe-parent families 
X 100 

Total census families in private households 
 

Proportion of rented dwellings (%) LogLoue Tenants 
X 100 

Total private households by tenure 
 

Prevalence of low income based on the Low-

Income Measure after tax (%)  

 

FaiblRv Calculation by Statistics Canada 

Proportion of renter households spending 30% 

or more of income on shelter costs (%)  

 

Loyer30 Calculation by Statistics Canada 

Proportion of dwellings in need of major 

repairs (%) 

RepaMaj Dwellings in need of major repairs 
X 100 

Total occupied private dwellings by dwelling condition  
 

Proportion of apartments in a building that has 

five or more storeys (%) 

Res5etg Apartments in a building that has five or more storeys 
X 100 

Total occupied private dwellings by type of residential construction 
 

Proportion of dwellings built before 1980 (%)  Log1980 Dwellings built before 1960 + Dwellings built between 1961 and 1980  
X 100 

Total occupied private dwellings by period of construction  
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3.4.2 Coping Capacity Index 

Coping capacity is an essential element in the analysis of vulnerability to heat waves since it helps reduce 

negative effects by strengthening the population’s resilience to this climatic hazard (Matthies et al., 2008, 

Bélanger et al., 2008). While sensitivity represents the intrinsic socio-economic characteristics of a 

population in the face of a climatic hazard, coping capacity represents “[t]he ability of people, institutions, 

organisations and systems, using available skills, values, beliefs, resources and opportunities, to address, 

manage and overcome adverse conditions in the short to medium term” (Masson-Delmotte et al., 2018). 

For our study, coping capacity refers to the population’s ability to prepare for, respond to, and recover 

during and after a heat wave. 

As in the Atlas of the Vulnerability of the Quebec Population to Climate Hazards (Barrette et al., 2018), 

the creation of proximity indicators was chosen in order to avoid the trap of having one variable for 

sensitivity and its opposite as a variable for coping capacity. For example, data representing a person with 

a high income in coping capacity is the opposite of data representing a person with a low income in the 

sensitivity index. As a result, many studies that include coping capacity in vulnerability calculations use 

socio-economic variables (Jagarnath et al., 2020; Zemstov et al., 2020). For the current study, local places, 

facilities, or services offering a cool shelter during an oppressive heatwave, and hospitals for access to 

care, were selected to construct the coping capacity index.  

3.4.2.1 Variable Selection 

The variables for the coping capacity index were selected in two stages. The first stage in the process was 

to identify the appropriate variables through a literature review. This step enabled us to identify variables 

that have been used in similar studies and have proven relevant for assessing coping capacity. The second 

stage involved a search and selection of available variables for the entire study area.  

3.4.2.1.1 Literature Review 

In constructing their heat wave coping capacity index, a number of studies incorporate the proximity or 

accessibility of populations to hospitals or healthcare (Kim et al., 2017; Alonso and Renard, 2020; Dong 

et al., 2020; Ellena et al., 2020; Grigorescu et al , 2021), while other studies include the proximity or 

absence of green spaces (Hulley et al., 2019; Mallen et al., 2019; Liu et al., 2020; Zheng et al., 2020; 

Grigorescu et al., 2021) or public swimming pools and splash pads (Harlan et al., 2006; Alberini, Grand 

and Alhassan, 2011; Nayak et al., 2017; Fraser et al., 2017). 

Lastly, many studies incorporate accessibility to a cooling centre (Alberini et al., 2011; Fraser et al., 2017; 

Fraser et al., 2018; Voelkel et al., 2018; Hulley et al., 2019; Liu et al., 2020; Maragano et al., 2020). A 
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cooling centre is an air-conditioned building, or a cooler site designated as a safe place in the event of a 

heat wave. Examples include community centres, movie theatres, schools, museums, and air-conditioned 

shops. Public accessibility to cooling centres is a common strategy employed by various levels of 

government to reduce the vulnerability of populations to heat waves (Widerynski et al., 2017). Although 

there are official cooling centres, people often take refuge in informal cooling centres such as shopping 

malls and movie theatres near their homes during a heat wave (Fraser et al., 2018).  

3.4.2.1.2 Variable Selections Available for the Entire Study Area 

After selecting the variables for the coping capacity index, the data available for the entire study area were 

identified to ensure comparability between the different areas. Despite data availability limitations, we 

selected a set of 10 proximity indicators to build the index. The data selected and the reasons given are 

presented in Table 8. 

Table 8: Datasets Used to Estimate the Coping Capacity Dimensions of Vulnerability  

Variables names Raisons 

Pools and splash pads Allows people to cool down 

Parks Allows people to go to cooler places 

Community centers Allows people to go to a cool zone and where community 

workers can act to protect vulnerable populations 

Hospitals Allows people experiencing heat discomfort to obtain care 

Art galleries Allows people to go to a cool zone 

Libraries Allows people to go to a cool zone 

Museums  Allows people to go to a cool zone 

Shopping centers  Allows people to go to a cool zone 

Beaches Allows people to go to a cool zone 

Cinema Allows people to go to a cool zone 

 

3.4.2.2 Construction of the Coping Capacity Index 

3.4.2.2.1 Data Acquisition  

The open databases (The Linkable Open Data Environment (LODE)) released by Statistics Canada were 

used to acquire most of the data required to create the coping capacity index. These databases, under the 

Linkable Open Data initiative, aim “at enhancing the use and harmonization of open micro data primarily 

from municipal, provincial and federal sources” (Statistics Canada, 2022f). They include specific data on 
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the locations of buildings and schools, and on healthcare, cultural and artistic, and recreational and sports 

facilities.  

In-depth research also uncovered a website containing a list of all shopping centres in Canada, including 

their street addresses. The website data was acquired using a method called web scraping, enabling all the 

web page data to be acquired with just a few lines of code. As the data used for geocoding was not 

consistent in its nomenclature, geolocation was carried out by Google Maps using an R program. This 

program uses the shopping centre data file, then sends this information to the Google Maps servers via an 

application programming interface (API). The inconsistency problem is thereby sent back to Google, 

which is in a much better position to deal with it. The servers return latitude and longitude coordinates. 

These coordinates were then added to the shopping centre database. Lastly, the data were transformed into 

geospatial data in a geographic information system. On rare occasions, when some shopping centres could 

not be located, geocoding was carried out manually. A member of the team performed a validation of the 

layer along with staff from the Centre GéoStat at Université Laval, who found no apparent errors in the 

shopping centre file. 

For movie theatres, the database used comes from the International Showtimes website, which is a 

business that offers an API for accessing various data related to movie theatres around the world. After 

we requested it, this company sent us a list of movie theatres across Canada with addresses and 

geolocation coordinates. 

3.4.2.2.1.1 Missing Data from Open Databases Released by Statistics Canada 

Certain variables used for the coping capacity index could not be located in the standard database for all 

CMAs and CAs. In these cases, the data were found and geolocated manually. Data for missing variables 

were located on several websites, including government, regional, municipal, tourism, and commercial 

sites and blogs. The variables that were missing for each province and territory are included in Table 9. 

There were no missing data for British Columbia, New Brunswick, Ontario, and Quebec. Data geolocation 

was carried out manually in Google Maps, using longitude and latitude coordinates. These coordinates 

were then changed into geospatial data in a geographic information system (ArcGIS Pro).  
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Table 9: Missing Data for Each Province and Territory 

Province or territory Missing variables 

Alberta Beaches 

Prince Edward Island Libraries, shopping centers, community centers, art galleries, 

parks, pools and splash pads, beaches  

Manitoba Beaches 

Nova Scotia Pools and splash pads, beaches  

Newfoundland and 

Labrador 

Community centers, parks, pools and splash pads, beaches  

Northwest Territories Community centers, pools and splash pads, beaches  

Saskatchewan Shopping centers, pools and splash pads, beaches  

Yukon Community centers, pools and splash pads, beaches 

 

3.4.2.2.2 Data Processing 

3.4.2.2.2.1 Relocation of Batch Barycentres and Creation of a New Centre for Dissemination Areas 

The approach applied to calculate proximity indices is similar to that used by Barrette et al. (2018) in the 

Atlas of the Vulnerability project. The method estimates the distance by car between the weighted centre 

of a DA and one of the locations shown in Table 9. More specifically, the centre of the DA was weighted 

using the number of people residing in the dissemination block (DB). According to Statistics Canada 

(2017), a DB is “an area bounded on all sides by roads and/or boundaries of standard geographic areas. 

The dissemination block is the smallest geographic area for which population and dwelling counts are 

disseminated.” The new, “corrected” centre better represents the distribution of the population within the 

DA.  

3.4.2.2.2.2 Proximity Measurement 

The corrected centre was then moved to the nearest road section so that the network analysis could be 

carried out. This eliminates excessive distortion when calculating the proximity index for distant corrected 

centres. To achieve this, a 5-m buffer zone was calculated around each of the roads. The corrected centre 

of the DAs was then moved to the 5-m line of the buffer zone.  

With a view to data sharing and method reproducibility for tool users, we developed Network Analysis in 

R using the OSMR library. The driving distance between the corrected centre and each of the variables 

was calculated by CMA. A table containing all the distances between each point entity of each variable 

was designed and a centre was specified. The smallest distance was then used to calculate the coping 

capacity index.  

https://www.ouranos.ca/en/projets-publications/atlas-interactif-vulnerabilite-population
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The decision to use distance by car rather than distance on foot was justified by the fact that there may be 

no destination (e.g., swimming pool, hospital) within a CMA. To avoid having zero values when 

calculating the PCA, we chose to include all the points of a variable. We felt it was unreasonable to choose 

a walking distance. It also eliminates the border issue. For example, for two neighbouring CMAs, the 

closest destination may be in the neighbouring CMA. However, this choice poses a major technical 

challenge. R’s basic library does not allow users to have a matrix with more than 10,000 entries. 

Considering that there are over 40,000 DAs, we quickly reached the library maximum.  

To understand the nature of the problem, it is important to indicate that R’s OSMR library makes an API 

request to the OpenStreetMap servers. The coordinates of the various points were sent to the servers in 

the request. These servers calculate the distance between points using the road network and relay the 

distance. The point limit for a request is a matrix of 10,000 trips. However, the source codes and this data 

are available since OpenStreetMap is open source. This makes it possible to have your own 

OpenStreetMap server. Canadian road data were downloaded from Geofabrik. Then, the network file was 

built inside Docker. For the road network file, we specified that the method of transportation for the 

purposes of distance calculation is by car. Lastly, the server was launched in local mode, making sure to 

increase the size of the matrix to make it as large as possible. The only thing left to do was to indicate the 

address of the local server in the distance calculation function in R, so that calculations were performed 

on the local server rather than on the OpenStreetMap servers.   

3.4.2.2.3 Principal Component Analysis 

As with the sensitivity index (see section 3.4.1.3.2), we decided that the sample of 44,647 DAs would be 

split by province and territory for the PCA calculation. The results of the preliminary tests showed that 

the PCA on DAs for the whole country mitigated local variabilities in the coping capacity index. To this 

end, 11 new samples were created with the data to better represent provincial realities. As with the 

sensitivity index, the Northwest Territories and Yukon were included in the same sample.  

Before proceeding with the PCA, the following assumptions were checked to ensure that the results of 

the analysis were reliable and interpretable: verification of the correlation matrix, Bartlett’s Test of 

Sphericity, and the Kaiser-Meyer-Olkin (KMO) test (Pett et al., 2003). Although the PCA calculation 

identifies the components that explain 100% of the variance, only significant components should be 

retained for relevant analysis. There are several methods for selecting the number of components. The 

most common method uses the eigenvalue. The higher the eigenvalue of a component, the greater the 

proportion of total variance it explains. By convention, all components with an eigenvalue greater than 1 

are considered significant (Bourque et al., 2006). 

http://download.geofabrik.de/
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3.4.2.2.4 Calculation of the Coping Capacity Index 

As with the sensitivity index, running the PCA created new synthetic components from the data. Once we 

had decided on the number of relevant components to be retained, a score was assigned to each DA. For 

each component, scores were weighted by the proportion of variance associated with them to provide a 

more representative result. Lastly, the weighted scores were added together to produce the coping capacity 

index. 

3.4.3 Vulnerability Index 

The vulnerability index is the total of the sensitivity index and the coping capacity index for each DA. 

There is no consensus on how to calculate the vulnerability index in the scientific literature. The choice 

of adding or subtracting vulnerability components depends on the conceptual framework. According to 

the variables and methodology chosen for this project, the indices had to be added. For example, the 

higher the sensitivity index score, the greater the vulnerability. And for the coping capacity index, the 

higher the score, the greater the vulnerability. We could say that it is an index of the “inability” to cope. 

As the two indices measure the negative aspect of vulnerability in the same way, their cumulative effects 

can be better represented by adding them together. Before calculation, the results of each index were 

normalized between 0 and 1, so that they could be compared over a common range of values. For this 

step, we used the normalize feature from the BBmisc package in R. The vulnerability index is calculated 

using data from one province at a time, i.e., the same samples as for the PCA.  

3.4.4 Exposure Index 

According to the IPCC (Field et al., 2014), exposure is linked to the presence of people, livelihoods, 

species or ecosystems, environmental resources and services, infrastructure, or economic, social, or 

cultural assets in a place likely to suffer damage (due to climate change and its impacts). 

3.4.4.1 Model Selection 

Although there are several different types of modeling available to study urban heat islands (Ketterer and 

Matzarakis, 2015, Khatami, Mountrakis and Stehman, 2016, Oukawa, Krecl and Targino, 2022, Almeida, 

Teodoro and Gonçalves, 2021), the team chose the Random Forests (RF) model (Breiman, 2001) to predict 

the temperature difference of a pixel with respect to the mean temperature value of a reference group of 

pixels located in a non-urban environment. RF is a supervised machine learning algorithm commonly 

used to study the phenomenon of urban heat islands (Bernard et al., 2017, Chen et al., 2022, Gage and 

Cooper 2017, Marchal et al., 2022, Straub et al., 2019). RF models allow complex non-linear relationships 

to be modeled, enabling a more accurate prediction to be formulated in the case of urban heat island 
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mapping. They are generally flexible and easily interpreted, since they consider multiple variables 

simultaneously when making a decision, whether it is on the physical characteristics of the city, 

meteorological characteristics, or environmental characteristics. RF also enables the prdocution of 

prediction maps with a high degree of spatial accuracy, an important parameter when mapping the 

intensity of urban heat islands at fine spatial resolution.  

3.4.4.2 Data Used 

The aim of this section is to describe the data used to map a heat wave exposure index.  

3.4.4.2.1 Landsat Image Processing 

Landsat 8 is a satellite launched in 2013 that revisits the same point every 16 days. Notably, it has an infrared 

thermal sensor on board that operates on two thermal bands (i.e., band 10 [B10] with a wavelength of 10 

μm and band 11 [B11] with a wavelength of 12 μm) at a spatial resolution of 30 m (García-Santos et al., 

2018). In recent years, satellite-based measuring instruments have been widely used for heat island mapping 

and monitoring (Kaplan, 2019). The combined use of various satellite instruments allows for surface 

temperature to be evaluated. Surface temperature is used in the scientific literature both as an element of 

heat exposure and for mapping surface heat islands (Ho et al., 2015; Zhang et al., 2018; Cheng et al., 2019; 

Räsänen et al., 2019; Conlon et al., 2020; Zhang et al., 2021). An atmospheric correction must be applied 

to the B10 and B11 measurements to get an accurate estimate of ground surface temperature. There are four 

main methods for providing this atmospheric correction, namely Radiative-Transfer Equation, 

Mono-Window, Single-Channel, and Split-Window (García-Santos et al., 2018). 

As of 2017, the Landsat team no longer recommends the use of band 11 (B11) for Split-Window, since 

calibration problems have been detected (Sagris et Sepp, 2017; García-Santos et al., 2018). The 

methodological framework used to calculate soil temperatures is that of Wang et al. (2020), which 

implements a generalized version of Single-Channel in the Google Earth Engine interface. The use of this 

framework is justified by the validation of the results obtained by Wang et al. (2020). These authors also 

publicly provide the code for the implementation, and the calculations are performed on Google’s servers 

rather than locally, which greatly reduces computation time. This avoids errors by users during calculation 

and ensures the quality of surface temperatures. 
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In concrete terms, the generalized Single-Channel is calculated as follows: 

Equation 1 Ground temperature calculation using the Single-Channel Method 

 

𝑇𝑆 =

𝑐2
𝜆⁄

ln(
𝑐1

𝜆5 ∙ 𝐵(𝑇𝑠)
+ 1)

 

with  

𝐵(𝑇𝑠) = 𝑎0 + 𝑎1𝑤 + (𝑎2 + 𝑎3𝑤 + 𝑎4𝑤2)
1

𝜀
+ (𝑎5 + 𝑎6𝑤 + 𝑎7𝑤2)

𝐿𝑠𝑒𝑛

𝜀
 

 
Where 𝐿𝑠𝑒𝑛 represents radiance at the instrument, 𝜀 represents ground surface emissivity, 𝑤 represents 

atmospheric water vapor, 𝑐1 = 1.19104 × 108𝑊𝜇𝑚−2 𝑠𝑟−1 , 𝑐2 = 1.43877 × 104𝜇𝑚𝐾, 𝐵(𝑇𝑠 ) represents 

the Planck radiance of  temperature 𝑇𝑠 and 𝜆 represents effective wavelength (in this case, 10.904 𝜇𝑚). 

For the temperature, only images from a so-called hot day (i.e., a maximum temperature of 30 °C or more) 

were used. To do this, Environment Canada meteorological data for each of the active stations in Canada 

from 2015 to 2020 were used to identify hot days temporally and spatially. Landsat images from 2020, 

taken between May and September inclusively, coinciding with a warm day and with less than 10% cloud 

cover, were downloaded. The Single-Channel method was applied to these images.  

3.4.4.2.2 Built Environment and Vegetation Density Indices 

The Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Built-Up Index 

(NDBI) are two variables frequently used to identify urban heat islands. NDVI and NDBI variables are 

not directly accessible on Google Earth Engine for Landsat satellite images. For Landsat 8 images, NDVI 

is calculated as follows: 

Equation 2 Normalized Different Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

 

Where NIR corresponds to the near-infrared band and Red to the red band. The NDBI is calculated as 

follows:  

 

Equation 3 Normalized Difference Built-up Index (NDBI) 

𝑁𝐷𝐵𝐼 =
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
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Where, again, NIR corresponds to the near-infrared band and SWIR to the short-wave infrared band.  

The median value of these three bands between the first day of May and the last day of September for each 

pixel was used in the 2020 calculations. These calculations were carried out using Google Earth Engine.   

3.4.4.2.3 Surface Imperviousness 

In order to estimate the percentage of imperviousness at fine resolution, we created a file for southern 

Quebec. To this end, we adopted the following methodological framework (Li et al., 2020). Simply put, the 

method is based on training an artificial intelligence algorithm (a fully convolutional neural network 

[FCNN]) on the U.S. Geological Survey’s National Land Cover Database surface imperviousness 

percentage data, all of which was implemented on a Google platform called Colab, allowing us to use 

Google’s cloud services. Since the training images are all found in the United States, it is expected that the 

algorithm will perform well for the Quebec region, which shares a similar summer climate and built and 

natural environment, particularly with the northeastern United States. The use of an FCNN is preferred for 

its ability to extract information from multi-spectral band imagery (such as colour and thermal imagery) in 

addition to being able to take into account the value of neighbouring pixels (by incorporating them into one 

or more convolutional layers) (Li et al., 2020). The model used is the pre-trained one, with the optimization 

parameter Rectified Linear Unit (ReLU), with 50 epochs. In data analysis, an epoch refers to a complete 

iteration of the training process of a machine learning model (Li et al., 2020). Epochs are therefore used to 

measure a model’s training progress over time. The model required 25 h of processing and produced an 

RMSE of ~0.08, indicating a very low margin of error.  

3.4.4.2.4 Relative Temperature  

The methodology used to calculate heat island intensity is based on Li et al. (2018). This method was chosen 

for several reasons. First, it allows for reproducibility, as there is no longer any subjectivity on the part of 

researchers as to the location of urban and rural pixels. Deployment of the method is also fairly 

straightforward, yet scientifically sound, making heat island mapping possible for all Canadian CMAs and 

CAs. 

In order to roughly determine the difference observed between urban environments and the surrounding 

rural areas, a difference was estimated between the pixel temperature and the average temperature of 

pixels in a control zone. This control zone was identified by selecting the pixels in the image with the 

lowest level of surface imperviousness. The different images were then integrated into a mosaic, with 

overlapping pixel values aggregated by the mean temperature. 
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3.4.4.2.5 Elevation, Longitude, Latitude, and Proximity to a Body of Water 

The elevation of each pixel in the study area was estimated using the GTOPO30 Global Digital Elevation 

Model file developed and distributed by Esri. Geographical coordinates were calculated using ArcGIS 

software in the Web Mercator projection (Nad 83), the same projection that will be used to display the web 

maps. Lastly, the Euclidean distance between the pixel and the nearest body of water was calculated to 

construct three separate indicators: distance to the nearest large body of water (1,000 km2 or more), distance 

to the nearest small body of water (less than 1,000 km2), and distance to the nearest body of water. 

3.4.4.3 Study Area and Sampling  

The modelling area covers the inhabited portion of 156 Canadian CMAs and CAs. To delimit this territory, 

a 500-m buffer zone was defined around the residential areas delimited by dasymetric mapping (see 

section 2). Observations were divided into groups of provinces (Table X). A small number of pixels used in 

the multivariate model were selected using a simple random sampling design. To determine whether the 

samples were representative of the population from which they were drawn, we used two parametric 

statistical tests (analysis of variance [ANOVA] and Student’s t-test) and two non-parametric tests (Kruskal-

Wallis test and Mann-Whitney U test) (Hair et al., 2014).  

3.4.4.4 Modelling  

Random forest modelling was used to predict the temperature difference of a pixel compared with the mean 

temperature of a reference group of pixels located in a non-urban environment. Of the sample of pixels 

initially selected, 75% were used to train an algorithm, while the remaining pixels (25%) were used to 

validate the model. In addition to listing the number of pixels sampled per territory, Table 10 shows the 

various optimal parameters used to create random forests.  
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Table 10: Number of Pixels and Parameters Used For the Modelling by Major Canadian Region  

Region Number of 

sampled pixels 

Number of 

trees 

Minimum 

number of 

nodes 

Randomly 

sampled 

variables 

Maritimes 100 000  

 

2000 

 

 

2 

 

 

4 
Quebec 100 000 

Ontario 200 000 

Centre 200 000 

West Coast 150 000 

 

Figure 3 illustrates the approach used to select optimal model parameters. Three parameters were used:   

• The number of decision trees to be constructed by the forest algorithm. 

• The minimum number of samples required to form a leaf on the decision tree.  

• The number of variables to consider when searching for the best division at each node.  

These parameters were adjusted using a grid search to obtain the best results for a regression model using 

the tidymodels library, based on maximizing the value of the coefficient of determination (R2) and 

minimizing the root mean square error (RMSE).   

RMSE is a commonly used measure for assessing the performance of regression models (Gareth et al., 

2013). It allows the prediction error to be expressed in the same unit as the target variable, making it easy 

to interpret. A lower RMSE indicates better model performance in terms of predicting the target variable. 

This is calculated as follows:   

 

Equation 4 Root-mean-square error (RMSE) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − �̂�𝑖 )2𝑁

𝑖=1

𝑁
 

 

where N is the number of observations, y is the actual value of the target variable, and ŷ is the value 

predicted by the model for that observation.  

For its part, the coefficient of determination (R²) is a measure of the quality of the fit of a regression model 

(Gareth et al., 2013). It specifies the proportion of the total variance of the dependent variable (y) that is 
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“explained” by the model. The R² is calculated by comparing the total variance of the dependent variable 

(y) with the residual variance (prediction error) after model adjustment. The R² is calculated as follows:   

 

Equation 5 Coefficient of determination (R2) 

𝑅2 =
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑(�̂�𝑖 − 𝑦)2

∑(𝑦 − 𝑦)2  

 

where SSE is the sum of squared differences between the observed values of the dependent variable (y) and 

the values predicted by the model, and SST is the sum of squared differences between the observed values 

of y and the mean of y. Note that the closer the R² is to 1, the more the model “explains” or accounts for a 

significant proportion of the variance in the dependent variable, and the better the model’s fit. 

 

Figure 3: Scatter plot matrix representing the effect of changing the parameters on the model optimization.  
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3.5 RESULTS 

3.5.1 Creating Synthetic Indices 

3.5.1.1 Sensitivity Index 

Adherence to the Assumptions 

Before proceeding with the PCA for the sensitivity index, it is essential to check that the data for each 

province and territory adhere to the assumptions. 

1) Correlation Matrix 

By observing the correlation matrices, we were able to validate the existence of correlations between the 

12 sensitivity index variables for each province and territory.  

2) Bartlett’s Test of Sphericity 

Bartlett’s Test of Sphericity is used to test the hypothesis that the correlation matrix is an identity matrix, 

i.e., that the variables are independent overall. The results indicate that the test is significant (p < 0.001). 

The variables are therefore related and there are inter-item correlations (Table 11). 

Table 11: Results of Barlett’s Test of Sphericity for the Sensitivity Index 

Province or territory Chi-squared 

(χ2) 

Degrees of 

freedom 

Probability value 

(p-value) 

Alberta 22 106.73 66 < 0.001 

British Columbia 24 655.74 66 < 0.001 

Prince Edward Island  796.53 66 < 0.001 

Manitoba 8 353.23 66 < 0.001 

New Brunswick 4 443.93 66 < 0.001 

Nova Scotia 5 94.,2 66 < 0.001 

Ontario 86 125.33 66 < 0.001 

Quebec 57 901.61 66 < 0.001 

Saskatchewan 6 509.37 66 < 0.001 

Newfoundland and Labrador 2 179.67 66 < 0.001 

Northwest Territories + Yukon  362.9 66 < 0.001 

3) Kaiser-Meyer-Olkin (KMO) Index 

The KMO index is used to check the quality of inter-item correlations. Most provinces and territories score 

between 0.7 and 0.8 (Table 12). This means that the data show an average fit. British Columbia is the only 

province to achieve a mediocre value, with a KMO index between 0.6 and 0.7. This is probably not due to 
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sample size, since this is the province with the third most DAs in its territory. Based on the results, we could 

now perform a PCA for each province and territory.  

 

Table 12: Results of the Kaiser-Meyer-Olkin Index for the Sensitivity Index 

Province or territory KMO 

index 

Alberta 0.766 

British Columbia 0.664 

Prince Edward Island 0.738 

Manitoba 0.785 

New Brunswick 0.757 

Nova Scotia 0.745 

Ontario 0.776 

Quebec 0.769 

Saskatchewan 0.772 

Newfoundland and Labrador 0.784 

Northwest Territories + Yukon 0.710 
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Results of the Principal Component Analysis 

a) Alberta 

The results for Alberta show that the first four components have an eigenvalue greater than 1 (Table 13). 

These components explain 68.5% of the variance. When looking at the graph of contributions of variables, 

we note that the proportion of renters spending 30% or more of household income on housing (Rent30), 

the proportion of dwellings in need of major repairs (MajRepa), and the proportion of residences with 

five or more storeys (Res5sty) contribute more to the fifth component than to the first four. The final 

decision was to retain the first five components of the PCA instead of four (Dim. 1 to 5 in the Figure 4), 

in order to retain their representativeness in the calculation of the sensitivity index. The five components 

account for 75.9% of the variance explained. 

Table 13: PCA of the Sensitivity Index for Alberta 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 3.911 32.595 32.595 

2 1.663 13.859 46.454 

3 1.615 13.462 59.916 

4 1.025 8.538 68.454 

5 0.897 7.472 75.926 

6 0.702 5.854 81.779 

7 0.624 5.197 86.977 

8 0.497 4.141 91.118 

9 0.378 3.152 94.270 

10 0.321 2.676 96.946 

11 0.219 1.826 98.772 

12 0.147 1.228 100.000 

Figure 4: Variable Contribution for Each Component of the Sensitivity Index for Alberta  
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b) British Columbia 

For British Columbia, the PCA results show that the first four components have an eigenvalue greater 

than 1 (Table 14). These components explain 66.8% of the variance. Figure 5 shows that the proportion 

of renters spending 30% or more of household income on housing (Rent30), the proportion of dwellings 

in need of major repairs (MajRepa), and the proportion of homes with five or more storeys (Res5sty) 

contribute more to the fifth component than to the first four. The contribution of the proportion of 

dwellings built before 1980 (Dwe1980) is higher for the sixth component. It also already contributes to 

components two and four. To ensure that all variables are represented in the sensitivity index calculation, 

the first five components of the PCA were retained rather than four. The five components account for 

73.5% of the variance explained. 

Table 14: PCA of the Sensitivity Index for British Columbia 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 3.167 26.390 26.390 

2 1.859 15.488 41.877 

3 1.771 14.755 56.632 

4 1.215 10.126 66.758 

5 0.807 6.723 73.481 

6 0.730 6.080 79.561 

7 0.665 5.541 85.102 

8 0.493 4.111 89.213 

9 0.452 3.769 92.982 

10 0.378 3.149 96.131 

11 0.290 2.419 98.550 

12 0.174 1.450 100.000 

Figure 5: Variable Contribution for Each Component of the Sensitivity Index for British Columbia 
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c) Prince Edward Island 

The results for the province of Prince Edward Island show that the first four components have an 

eigenvalue greater than 1 (Table 15). These components explain 67.5% of the variance. Looking at Figure 

6, we see that the proportion of people with no certificate, diploma, or degree (NoDpl) and the proportion 

of dwellings built before 1980 (Dwe1980) contribute more to the fifth component than to the first four. 

Therefore, it is worth retaining the fifth component, since its eigenvalue (0.955) is very close to 1. Its 

inclusion in the calculation of the sensitivity index explains 75.5% of the variance.  

Table 15: PCA of the Sensitivity Index for Prince Edward Island 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 3.735 31.127 31.127 

2 2.038 16.979 48.107 

3 1.214 10.117 58.224 

4 1.117 9.308 67.532 

5 0.955 7.955 75.488 

6 0.751 6.262 81.750 

7 0.670 5.583 87.333 

8 0.487 4.055 91.388 

9 0.402 3.350 94.738 

10 0.314 2.613 97.351 

11 0.177 1.478 98.829 

12 0.141 1.171 100.000 

 

Figure 6: Variable Contribution for Each Component of the Sensitivity Index Prince Edward Island 
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d) Manitoba 

For Manitoba, the PCA results indicate that the first three components have an eigenvalue greater than 1 

(Table 16). These components explain 64.4% of the variance. The proportion of people with no certificate, 

diploma, or degree (NoDpl) and the proportion of recent immigrants (RcnImm) contribute more to the 

fourth component than to the first three (Figure 7). It has an eigenvalue (0.993) that approaches our 

criterion of 1. The contribution of variables for components five and six is less significant than for the 

others, with the exception of the proportion of renters spending 30% or more of household income on 

housing (Rent30), which contributes the most. Thus, the first four components of the PCA were used to 

calculate the sensitivity index. The four components account for 72.6% of the variance explained.  

Table 16: PCA of the Sensitivity Index for Manitoba 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.259 35.493 35.493 

2 1.890 15.748 51.240 

3 1.574 13.114 64.355 

4 0.993 8.272 72.627 

5 0.803 6.693 79.320 

6 0.614 5.115 84.435 

7 0.535 4.459 88.894 

8 0.417 3.472 92.366 

9 0.336 2.797 95.162 

10 0.289 2.406 97.568 

11 0.156 1.301 98.870 

12 0.136 1.130 100.000 

Figure 7: Variable Contribution for Each Component of the Sensitivity Index for Manitoba 
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e) New Brunswick 

The results for New Brunswick show that the first four components have an eigenvalue greater than 1 

(Table 17). These components explain 69.9% of the variance. The proportion of homes with five or more 

storeys (Res5sty) and the proportion of dwellings built before 1980 (Dwe1980) contribute more to the 

fifth and sixth components, respectively (Figure 8). However, the eigenvalues of these components 

deviate greatly from our criterion of 1, and the variables concerned already contribute to the other 

components. The sensitivity index was calculated using only the first four components of the PCA. 

Table 17: PCA of the Sensitivity Index for New Brunswick 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.052 33.766 33.766 

2 1.750 14.581 48.347 

3 1.562 13.019 61.366 

4 1.026 8.552 69.918 

5 0.787 6.557 76.475 

6 0.748 6.231 82.706 

7 0.636 5.297 88.003 

8 0.473 3.943 91.947 

9 0.371 3.096 95.042 

10 0.319 2.661 97.703 

11 0.144 1.200 98.902 

12 0.132 1.098 100.000 

 

Figure 8: Variable Contribution for Each Component of the Sensitivity Index for New Brun swick 
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f) Nova Scotia 

For Nova Scotia, the PCA results indicate that the first four components have an eigenvalue greater than 

1 (Table 18). These components explain 72.7% of the variance. Only the proportion of dwellings built 

before 1980 (Dwe1980) significantly contributes to the fifth component (Figure 9). As for the sixth 

component, its eigenvalue (0.664) is too low compared to our criterion of 1. The proportion of dwellings 

in need of major repairs (MajRepa) and the proportion of residences with five or more storeys (Res5sty) 

also contribute to dimension two. As a result, only the first four components of the PCA were used to 

calculate the sensitivity index. 

Table 18: PCA of the sensitivity index for Nova Scotia 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 3.791 31.592 31.592 

2 2.427 20.227 51.819 

3 1.497 12.479 64.298 

4 1.003 8.358 72.656 

5 0.795 6.622 79.278 

6 0.664 5.531 84.809 

7 0.525 4.373 89.182 

8 0.372 3.100 92.282 

9 0.319 2.656 94.938 

10 0.291 2.424 97.362 

11 0.176 1.465 98.827 

12 0.141 1.173 100.000 

 

Figure 9: Variable Contribution for Each Component of the Sensitivity Index for Nova Scotia  
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g) Ontario 

The results for Ontario show that the first four components have an eigenvalue greater than 1 (Table 19). 

These components explain 70.1% of the variance. The proportion of renters spending 30% or more of 

household income on housing (Rent30) contributes more to components five and six (Figure 10). The 

eigenvalues of these components are much lower than our criterion of 1. As a result, only the first four 

components of the PCA were used to calculate the sensitivity index.  

Table 19: PCA of the sensitivity index for Ontario 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.027 33.556 33.556 

2 1.763 14.688 48.245 

3 1.484 12.365 60.610 

4 1.138 9.486 70.095 

5 0.739 6.159 76.255 

6 0.694 5.786 82.041 

7 0.574 4.787 86.828 

8 0.469 3.906 90.735 

9 0.400 3.332 94.067 

10 0.345 2.879 96.946 

11 0.196 1.635 98.581 

12 0.170 1.419 100.000 

 

Figure 10: Variable Contribution for Each Component of the Sensitivity index for Ontario  
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h) Quebec 

For Quebec, the PCA results show that the first four components have an eigenvalue greater than 1 (Table 

20). These components explain 69.8% of the variance. The proportion of people of sensitive ages 

(SensAge) and the proportion of people who do not know either official language (OffLang) contribute 

more to the fifth component than to the first four (Figure 11). It makes sense to keep the fifth component, 

since its eigenvalue (0.947) is very close to 1. Its inclusion in the calculation of the sensitivity index 

explains 77.7% of the variance. 

Table 20: PCA of the Sensitivity Index for Quebec 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.190 34.916 34.916 

2 1.588 13.231 48.147 

3 1.470 12.247 60.394 

4 1.132 9.436 69.831 

5 0.947 7.888 77.719 

6 0.618 5.148 82.867 

7 0.565 4.709 87.576 

8 0.421 3.508 91.084 

9 0.411 3.421 94.506 

10 0.372 3.099 97.604 

11 0.174 1.449 99.053 

12 0.114 0.947 100.000 

 

Figure 11: Variable Contribution for Each Component of the Sensitivity Index for Quebec  
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i) Saskatchewan 

The results for Saskatchewan show that the first three components have an eigenvalue greater than 1 

(Table 21). These components explain 63. 8% of the variance. A number of variables contribute 

significantly to components four, five, and six. This includes the proportion of people with no certificate, 

diploma, or degree (NoDpl), the proportion of people who do not know either official language (OffLang), 

the proportion of renters spending 30% or more of household income on housing (Rent30), and the 

proportion of dwellings in need of major repairs (MajRepa) (Figure 12). The first five components of the 

PCA were retained rather than three to ensure that all variables are represented in the sensitivity index 

calculation. The five components account for 77.4% of the variance explained.  

Table 21: PCA of the sensitivity index for Saskatchewan 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.043 33.693 33.693 

2 1.923 16.028 49.722 

3 1.686 14.050 63.771 

4 0.837 6.976 70.747 

5 0.800 6.665 77.412 

6 0.641 5.339 82.750 

7 0.603 5.025 87.776 

8 0.498 4.147 91.923 

9 0.379 3.157 95.080 

10 0.278 2.314 97.394 

11 0.187 1.558 98.951 

12 0.126 1.049 100.000 

 

Figure 12: Variable Contribution for Each Component of the Sensitivity Index for Saskatchewan 
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j) Newfoundland and Labrador 

For Newfoundland and Labrador, the PCA results indicate that the first three components have an 

eigenvalue greater than 1 (Table 22). These components explain 59.3% of the variance. The proportion of 

renters spending 30% or more of household income on housing (Rent30) contributes more to the fourth 

than to the first three (Figure 13). To ensure its representativeness in the calculation of the sensitivity 

index, the first four components of the PCA were retained. The explained variance now represents 67.1%. 

Table 22: PCA of the Sensitivity Index for Newfoundland and Labrador 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.163 34.692 34.692 

2 1.578 13.152 47.844 

3 1.379 11.489 59.333 

4 0.928 7.731 67.065 

5 0.810 6.754 73.819 

6 0.787 6.558 80.377 

7 0.678 5.647 86.024 

8 0.617 5.145 91.169 

9 0.465 3.871 95.040 

10 0.299 2.494 97.535 

11 0.169 1.412 98.947 

12 0,126 1.053 100.000 

 

Figure 13: Variable Contribution for Each Component of the Sensitivity Index for Newfoundland and Labrador 
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k) Northwest Territories + Yukon 

Results for the Northwest Territories and Yukon show that the first three components have an eigenvalue 

greater than 1 (Table 23). These components explain 63.3% of the variance. The proportion of renters 

spending 30% or more of household income on housing (Rent30), the proportion of dwellings in need of 

major repairs (MajRepa), and the proportion of dwellings built before 1980 (Dwe1980) contribute more 

to the fourth component than to the first three (Figure 14). Additionally, the eigenvalue of the fourth is 

0.961, which is near our criterion of 1. The sensitivity index calculation includes the first four components 

of the PCA instead of three, making it possible to explain 71.3% of the variance.  

Table 23: PCA of the sensitivity index for the Northwest Territories and the Yukon  

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.011 33.425 33.425 

2 2.026 16.880 50.306 

3 1.563 13.027 63.333 

4 0.961 8.009 71.342 

5 0.829 6.908 78.250 

6 0.716 5.966 84.216 

7 0.536 4.464 88.680 

8 0.484 4.033 92.714 

9 0.323 2.695 95.409 

10 0.273 2.272 97.681 

11 0.146 1.218 98.899 

12 0.132 1.101 100.000 

Figure 14: Variable Contribution for Each Component of the Sensitivity Index for the Northwest Territories and the 

Yukon. 
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3.5.1.2 Coping Capacity Index 

Adherence to the Assumptions 

Before proceeding with the PCA for the coping capacity index, it was critical to check that the data for each 

province and territory adhered to the assumptions.  

1) Correlation Matrix 

Observation of the correlation matrices validated the existence of correlations between the 10 variables 

of the coping capacity index for each province and territory.  

2) Bartlett’s Test of Sphericity  

Bartlett’s Test of Sphericity was used to test the hypothesis that the correlation matrix is an identity matrix, 

i.e., that the variables are independent overall. The results indicate that the test is significant (p < 0.001). 

The variables are therefore related and there are inter-item correlations (Table 24). 

Table 24: Results of Bartlett’s Test of Sphericity for the Coping Capacity Index 

Province or territory Chi-squared 

(χ2) 

Degrees of 

freedom 

Probability (p-value) 

Alberta 60 191.14 45 < 0.001 

British Columbia 58 609.51 45 < 0.001 

Prince Edward Island 2 828.24 45 < 0.001 

Manitoba 30 889.73 45 < 0.001 

New Brunswick 12 421.85 45 < 0.001 

Nova Scotia 15 144.56 45 < 0.001 

Ontario 223 344 45 < 0.001 

Quebec 97 669.7 45 < 0.001 

Saskatchewan 11 375.89 45 < 0.001 

Newfoundland and Labrador 3 903.67 45 < 0.001 

Northwest Territories + Yukon 2 438.87 45 < 0.001 
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3) Kaiser-Meyer-Olkin (KMO) Index 

The KMO index is used to check the quality of inter-item correlations. Prince Edward Island, Ontario, 

Northwest Territories, and Yukon have a KMO index between 0.8 and 0.9, which is considered 

meritorious. The majority of provinces and territories score between 0.7 and 0.8. This means that the data 

are middling. Saskatchewan is the only province to get a mediocre value, with a KMO index between 0.6 

and 0.7. Based on the results, we applied the PCA for each province and territory (Table 25). 

Table 25: Results of the Kaiser-Meyer-Olkin Index for the Coping Capacity Index  

Province or territory KMO index 

Alberta 0.708 

British Columbia 0.745 

Prince Edward Island 0.883 

Manitoba 0.743 

New Brunswick 0.701 

Nova Scotia 0.789 

Ontario 0.805 

Quebec 0.779 

Saskatchewan 0.676 

Newfoundland and Labrador 0.715 

Northwest Territories + Yukon 0.869 
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Results of the Principal Component Analysis  

a) Alberta 

For Alberta, the PCA results indicate that the first two components have an eigenvalue greater than 1 

(Table 26). These components explain 75.4% of the variance. Distance to the nearest museum (Museum) 

and distance to the nearest library (Lib) contribute more to components three and four, respectively 

(Figure 15). These components were not retained, since their eigenvalues (0.823 and 0.564) fall far short 

of our criterion of 1. The coping capacity index is calculated using only the first two components of the 

PCA. 

Table 26: PCA of the Coping Capacity Index for Alberta 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 5.256 52.564 52.564 

2 2.281 22.813 75.377 

3 0.823 8.234 83.611 

4 0.564 5.637 89.248 

5 0.405 4.051 93.299 

6 0.333 3.325 96.625 

7 0.184 1.839 98.464 

8 0.094 0.942 99.406 

9 0.056 0.565 99.971 

10 0.003 0.029 100.000 

 

Figure 15: Variable Contribution for Each Component of the Coping Capacity Index for Alberta  
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b) British Columbia 

The PCA results for British Columbia show that the first two components have an eigenvalue greater than 

1 (Table 27). These components explain 73.7% of the variance. Only the first two components of the PCA 

were used to calculate the coping capacity index (Figure 16). 

Table 27: PCA of the Coping Capacity Index for British Columbia 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.793 47.934 47.934 

2 2.572 25.721 73.656 

3 0.647 6.470 80.126 

4 0.588 5.879 86.005 

5 0.425 4.246 90.251 

6 0.330 3.297 93.547 

7 0.292 2.918 96.466 

8 0.216 2.163 98.628 

9 0.115 1.154 99.782 

10 0.022 0.218 100.000 

 

Figure 16: Variable Contribution for Each Component of the Coping Capacity Index for British Columbia 
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c) Prince Edward Island  

For Prince Edward Island, the PCA results indicate that only the first component has an eigenvalue greater 

than 1 (Table 28). This component explains 78.1% of the variance. Distance to the nearest community 

centre (Commctr), distance to the nearest library (Lib), and distance to the nearest beach (Beach) 

contribute more to the other components than to the first (Figure 17). However, their eigenvalues deviate 

too far from our criterion of 1. Therefore, they were not included in the calculation of the coping capacity 

index. 

Table 28: PCA of the Coping Capacity Index for Prince Edward Island  

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 7.810 78.103 78.103 

2 0.685 6.847 84.949 

3 0.494 4.937 89.887 

4 0.381 3.810 93.697 

5 0.269 2.693 96.389 

6 0.206 2.062 98.452 

7 0.094 0.944 99.395 

8 0.030 0.298 99.693 

9 0.021 0.211 99.904 

10 0.010 0.096 100.000 

 

Figure 17: Variable Contribution for Each Component of the Coping Capacity Index for Prince Edward Island 
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d) Manitoba 

The PCA results for Manitoba show that the first three components have an eigenvalue greater than 1 

(Table 29). These components explain 89.6% of the variance. Distance to the nearest hospital (Hospital) 

is a major contributor to component four (Figure 18). Since the eigenvalue (0.377) of the fourth 

component is too low compared to our criterion of 1, it was not included in the calculation of the coping 

capacity index. 

Table 29: PCA of the Coping Capacity Index for Manitoba 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.206 42.057 42.057 

2 3.665 36.648 78.705 

3 1.086 10.860 89.565 

4 0.377 3.775 93.340 

5 0.318 3.179 96.519 

6 0.206 2.058 98.577 

7 0.082 0.823 99.401 

8 0.052 0.525 99.925 

9 0.007 0.074 99.9997 

10 0.00003 0.0003 100.000 

 

Figure 18: Variable Contribution for Each Component of the Coping Capacity Index for Manitoba 
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e) New Brunswick 

For New Brunswick, the PCA results indicate that the first two components have an eigenvalue greater 

than 1 (Table 30). These components explain 80.0% of the variance. Distance to the nearest library (Lib) 

and distance to the nearest beach (Beach) contribute more to component three (Figure 19). Therefore, it 

was worth retaining the third component since its eigenvalue (0.964) is very close to 1. Its inclusion in 

the calculation of the coping capacity index explains 89.7% of the variance.  

Table 30:PCA of the Coping Capacity Index for New Brunswick 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.742 47.417 47.417 

2 3.260 32.603 80.020 

3 0.964 9.638 89.658 

4 0.425 4.248 93.906 

5 0.287 2.872 96.779 

6 0.138 1.379 98.157 

7 0.088 0.881 99.038 

8 0.065 0.652 99.691 

9 0.022 0.220 99.911 

10 0.009 0.089 100.000 

 

Figure 19: Variable Contribution for Each Component of the Coping Capacity Index for New Brunswick 
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f) Nova Scotia 

The PCA results for Nova Scotia show that the first three components have an eigenvalue greater than 1 

(Table 31). These components explain 82.7% of the variance. Distance to the nearest hospital (Hospital) 

contributes more to component four (Figure 20). The fourth component has an eigenvalue (0.631), which 

is too far from 1, and was not included in the calculation of the coping capacity index.  

Table 31: PCA of the Coping Capacity Index for Nova Scotia 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.983 49.833 49.833 

2 2.205 22.053 71.886 

3 1.081 10.807 82.693 

4 0.631 6.308 89.001 

5 0.340 3.397 92.398 

6 0.313 3.134 95.532 

7 0.229 2.295 97.827 

8 0.142 1.424 99.251 

9 0.075 0.746 99.998 

10 0.0002 0.002 100.000 

 

Figure 20: Variable Contribution for Each Component of the Coping Capacity Index for Nova Scotia  
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g) Ontario 

For Ontario, the PCA results indicate that the first two components have an eigenvalue greater than 1 

(Table 32). These components explain 74.1% of the variance. Distance to the nearest art gallery (Gallery) 

and distance to the nearest hospital (Hospital) contribute more to components three and four (Figure 21). 

As these variables already contribute to the other components, only the first two components of the PCA 

were used to calculate the coping capacity index. 

Table 32: PCA of the Coping Capacity Index for Ontario 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.369 43.691 43.691 

2 3.042 30.418 74.109 

3 0.874 8.736 82.846 

4 0.622 6.216 89.062 

5 0.470 4.695 93.757 

6 0.369 3.690 97.447 

7 0.115 1.147 98.593 

8 0.093 0.932 99.525 

9 0.042 0.417 99.942 

10 0.006 0.058 100.000 

 

Figure 21: Variable Contribution for Each Component of the Coping Capacity Index for Ontario  
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h) Quebec 

The PCA results for Quebec show that the first two components have an eigenvalue greater than 1 (Table 

33). These components explain 72.7% of the variance. Distance to the nearest beach (Beach) and distance 

to the nearest library (Lib) contribute more to components three and four, respectively (Figure 22). 

However, their eigenvalues deviate too far from our criterion of 1. They were not included in the 

calculation of the coping capacity index. 

Table 33:PCA of the Coping Capacity Index for Quebec 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.566 45.660 45.660 

2 2.707 27.065 72.726 

3 0.711 7.113 79.838 

4 0.614 6.137 85.975 

5 0.428 4.285 90.260 

6 0.355 3.555 93.815 

7 0.304 3.045 96.860 

8 0.159 1.591 98.450 

9 0.133 1.330 99.781 

10 0.022 0.219 100.000 

 

Figure 22: Variable Contribution for Each Component of the Coping Capacity Index for Quebec  
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i) Saskatchewan 

For Saskatchewan, the PCA results show that the first three components have an eigenvalue greater than 

1 (Table 34). These components explain 78.1% of the variance. Distance to the nearest community centre 

(Commctr) is a major contributor to component four (Figure 23). As this variable already contributes to 

the other components, the fourth component was not included in the calculation of the coping capacity 

index. 

Table 34:PCA of the Coping Capacity Index for Saskatchewan 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.431 44.314 44.314 

2 2.065 20.647 64.961 

3 1.310 13.102 78.064 

4 0.886 8.863 86.926 

5 0.642 6.421 93.348 

6 0.320 3.204 96.552 

7 0.151 1.506 98.058 

8 0.095 0.946 99.003 

9 0.065 0.653 99.656 

10 0.034 0.344 100.000 

 

Figure 23: Variable Contribution for Each Component of the Coping Capacity Index for Saskatchewan  
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j) Newfoundland and Labrador  

The PCA results for Newfoundland and Labrador show that the first three components have an eigenvalue 

greater than 1 (Table 35). These components explain 78.9% of the variance. Distance to the nearest library 

(Lib) and distance to the nearest community centre (Commctr) contribute more to dimension four (Figure 

24). The fourth component has an eigenvalue (0.787) that is too far from 1, and was therefore not included 

in the calculation of the coping capacity index. 

Table 35: PCA of the Coping Capacity Index for Newfoundland and Labrador 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 4.725 47.250 47.250 

2 1.848 18.481 65.731 

3 1.316 13.159 78.891 

4 0.787 7.869 86.759 

5 0.472 4.718 91.477 

6 0.364 3.639 95.116 

7 0.237 2.367 97.483 

8 0.157 1.568 99.051 

9 0.051 0.511 99.562 

10 0.044 0.438 100.000 

 

Figure 24:Variable Contribution for Each Component of the Coping Capacity Index for Newfoundland and 

Labrador 
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k) Northwest Territories + Yukon 

For the Northwest Territories and Yukon, PCA results indicate that only the first component has an 

eigenvalue greater than 1 (Table 36). This component explains 88.5% of the variance. All variables 

contribute minimally to the first component (Figure 25). Although some variables contribute more to the 

subsequent components, their eigenvalues are below our criterion of 1. The coping capacity index was 

calculated using the first component only. 

Table 36: PCA of the Coping Capacity Index for the Northwest Territories and the Yukon 

Component Eigenvalue Explained variance (%) Cumulative explained variance (%) 

1 8.851 88.515 88.515 

2 0.806 8.062 96.577 

3 0.195 1.951 98.528 

4 0.082 0.816 99.344 

5 0.038 0.378 99.722 

6 0.021 0.215 99.937 

7 0.005 0.049 99.986 

8 0.001 0.009 99.995 

9 0.0003 0.003 99.998 

10 0.0002 0.002 100.000 

 

Figure 25: Variable Contribution for Each Component of the Coping Capacity Index for the Northwest Territories 

and the Yukon 
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3.5.1.3 Exposure Index and Urban Heat Islands 

The final modelling was carried out using ArcGIS Pro software because its use greatly facilitated the 

visualization of mapping results in rapid processing times. Table 37 lists the coefficients of determination 

(R2) and root mean square error (RMSE) produced for each model used in the production of the data layers 

mapping urban heat islands. Generally, the models produced fit the data fairly well and account for a 

significant proportion of the variance of the variable of interest while producing, on average, a low quantity 

of errors. The results obtained are comparable to those of a similar Quebec study (Marchal et al., 2022).  

Table 37:Coefficients of determination and root mean square error of the models. 

 Validation dataset Complete dataset 

Region R2 RMSE R2 RMSE 

Maritimes 0.818 1.096 0.814 1.090 

Quebec 0.867 1.589 0.868 1.579 

Ontario 0.786 1.619 0.790 1.606 

Centre 0.776 1.782 0.778 1.764 

West-Coast 0.871 1.584 0.874 1.565 

 

As the example in Figure 26 shows, there does not seem to be any dependence between the errors produced 

by the models and the value predicted by them. In fact, the error appears to be randomly distributed and 

only weakly correlated with the predicted temperature.   
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Figure 26: Predicted Values and Errors Produced by the Model, Test Dataset, Province of Quebec. 

To validate the results of the analyses described above using external data, we compared the mapped results 

with two sources of information:  

A layer produced by the Centre d’enseignement et de recherche en foresterie (CERFO) for urbanized 

Quebec using 2012–2013 data mainly derived from satellite imagery. This is a nine-class ordinal variable 

describing the heat/cold island phenomenon.  

Digital data were recorded in the field using 75 temperature sensors distributed throughout Quebec City. 

These are three average temperature values (24h, diurnal, nocturnal) estimated for the period of July 1 to 

September 1, 2022. 

Table 38 shows the correlation coefficients on the estimated ranks between the temperature predicted by 

the model and the external validation data. These correlations, of medium intensity, are all statistically 

significant at the 0.01 threshold. 
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Table 38: Correlation between the temperature predicted by the model and the external data. 

Indicator Spearman’s RHO and p value 

CERFO 0.644; p < 0.01 

Average sensor temperature 0.460; p < 0.01 

Average daytime sensor temperature 0.346; p < 0.01 

Average nocturnal sensor temperature 0.448; p < 0.01 

 

3.5.2 Cartographic Representation  

This section includes the details associated with the representation of the four mapped indices. Table 39 

lists the geospatial data layers mapped, the discretization method, the number of classes, and the colour 

palette used. 

Table 39: Discretization and Colour Palettes Used in the Graphic Representation of Different Layers 

Layer Discretization method Number of 
classes 

Colour palette 

Sensitivity Quantiles per province 5 
 

Coping capacity Quantiles per province 5 
 

Vulnerability Quantiles per province 5 
 

Exposure Quantiles per province 5 
 

Relation between 

vulnerability and 

exposure 

Quantiles per variable 

and per province 

4 by 4 

 
Urban heat islands Equal amplitude 22 
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3.5.2.1 Sensitivity, Coping Capacity and Vulnerability Indices 

For the sensitivity and coping capacity indices, the numerical value of the indices obtained was classified 

into quintiles, by province. The resulting classes were subsequently labeled as follows: very low, low, 

moderate, high, very high (Figures 27 and 28). 

For the vulnerability index, a normalization between 0 and 1 of the sensitivity and coping capacity indices 

was applied, then an arithmetic operation was performed to create the new index (Section 3.4.3) so that the 

range of values of the index extends from 0 to 2. This new result was classified into quintiles for each 

province and then labeled (Figure 29). 

Figure 27: Sensitivity Index to Heat Waves – Ottawa Region 
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Figure 28: Coping Capacity Index to Heat Waves – Ottawa Region  

Figure 29: Vulnerability Index to Heat Waves - Ottawa Region 
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3.5.2.2 Exposure Index 

The map results were processed in two stages in order to display the phenomenon cartographically. First, 

classification (n=22) at equal intervals of the predicted values of relative temperature was carried out on 

the pixels overlapping the area covered by the model. Pixel values were smoothed using a cubic resampling 

method to improve map rendering by reducing image pixelation. Raster tiling was applied to the raster data 

layer before it was exported to a web service (Figure 30).  

 

Figure 30: Urban Heat Islands or Difference in Temperature Between Urban Areas and Vegetated Areas with High 

Surface Permeability – Ottawa Region 
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For the exposure index, the mapping approach consisted in averaging the predicted temperature values 

relative to the inhabited areas of the Statistics Canada dissemination areas. The vector data were then 

classified into quintiles before being exported to a web service (Figure 31). 

 

Figure 31: Exposure index to heat waves – Ottawa Region 
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3.5.2.3 Vulnerability and Exposure (Bivariate Map) 

Lastly, the research team used a bivariate choropleth map to display the vulnerability and exposure indices 

on the same screen. A bivariate choropleth map is a thematic map that allows two variables to be represented 

simultaneously using different colours or patterns (Figure 32). This mapping method facilitates the 

visualization of two variables at the same time, allowing relationships between the two to be quickly 

grasped. This graphical representation can help identify areas where the two variables are correlated or 

uncorrelated and can aid decision-making by identifying areas with different profiles for the two variables. 

The data classification method used is a cross-tabulation of quartiles estimated at the provincial level for 

the vulnerability and exposure indices. 

 

Figure 32: Vulnerability and Exposure (Bivariate Map) – Ottawa Region 
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3.6 CONCLUSION 

One of the aims of this research project was to map the vulnerability and exposure to extreme heat waves 

of people living in housing in 156 urban regions across Canada. To achieve this, we carried out a literature 

review and defined the main concepts involved. This enabled us to identify the dimensions of vulnerability 

and exposure that needed to be estimated and to identify the data that needed to be used to calculate 

statistical and geographical indicators. The team also documented the methods generally used to synthesize 

information to create indices.  

As part of this project, our team developed a methodology for selecting and constructing indicators of 

sensitivity, coping capacity, vulnerability, and exposure to extreme heat waves. Socio-economic and 

demographic indicators were calculated using 2021 Canadian census data aggregated at Statistics Canada’s 

DA level. Indicators of proximity to various services were estimated. Our team used PCA to synthesize this 

information in the form of indices. A predictive model was used to map the urban heat island phenomenon 

on a fine scale, using a machine learning algorithm and indicators estimating vegetation density, surface 

imperviousness, density of built areas, proximity to water, geographical coordinates, and elevation. 

Lastly, our team mapped the sensitivity, coping capacity, vulnerability, and exposure to extreme heat waves 

of 156 urban regions in Canada using univariate and bivariate choropleth mapping methods. A map of 

relative temperature differences at high spatial resolution was also produced (urban heat islands).  

 

  



 

76 
 

4 PRODUCTION OF A MAPPING TOOL 

4.1 INTRODUCTION 

The phenomenon of heat waves and urban heat islands is an increasingly significant issue for Canadian 

cities. To better understand and adapt to these phenomena, an interactive online mapping tool has been 

developed to meet the needs of two separate audiences. First, local stakeholders such as land-use planning, 

public health, and climate change adaptation professionals, who work on planning, implementing 

prevention measures, and managing heat waves and other related issues. Second, the general public, who 

is interested in understanding heat waves and urban heat islands in their community. This chapter will 

explore the features of the interactive mapping tool and how it can be used to better understand and adapt 

to the phenomena of heat waves and urban heat islands. 

4.2 OBJECTIFS  

The main objective of this component of the project is to produce an online mapping tool to disseminate 

the sensitivity, coping capacity, vulnerability, and exposure indices, and the location of urban heat islands 

for 156 urban regions in Canada, intended for the general public and local stakeholders. It also includes the 

following four sub-objectives:  

• To design and produce a prototype of the interactive mapping tool that will be evaluated by local 

stakeholders to check the accuracy of the maps and gather their comments and assessments to 

improve the final product. 

• To propose a final solution that will allow the maintenance of the mapping tool to ensure the long-

term dissemination of results at low cost and without having to resort to costly professionals, who 

are difficult for the DGUL to mobilize, given the limited duration of the project’s funding.  

• To develop a website containing an accessible map in a user-friendly application offering some 

analysis functions. 

• To make the information layers and methodology available to enable local stakeholders to extend 

the geographic scope of the project or customize the tool using local data that are not available at 

the analysis scale that we used.  
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4.3 CHOICE OF WEB MAPPING TECHNOLOGY SOLUTION 

Esri (Environmental Systems Research Institute) products were used in the design of the mapping 

application. ArcGIS Pro software was initially used to design the maps, which were then uploaded to 

Université Laval's ArcGIS Online (AGOL) portal. AGOL offers a wide range of tools to create interactive 

web-based maps. Once the web-based maps were designed using the Map Viewer interface, they were 

integrated into the ArcGIS Experience Builder (ExB) module. ExB is used to develop, customize, and 

launch web-based applications. One of the reasons the team chose ExB was that the mapping interface 

adapts well to mobile platforms. ExB supports the switch from conventional web browsers to mobile 

devices browsers, allowing the interface to be customized according to screen size. In addition, ExB makes 

it possible to implement several maps in the same application and to synchronize them. To ensure the long-

term viability of the work, the team will use the customization offered by ExB, enabling the layers and the 

application to be stored on the servers used by AGOL. Lastly, ExB enables extensive customization of the 

map window, including the integration of widgets into multiple applications.  

4.4 PROTOTYPE DEVELOPMENT AND EVALUATION 

4.4.1 Development 

To develop the prototype mapping tool, the team drew heavily on the work done for the Atlas of the 

Vulnerability of the Quebec Population to Climate Hazards (Barrette et al., 2018). The aim was to develop 

a prototype where stakeholders could navigate and measure the quality of the maps produced, assessing the 

accuracy and relevance to their specific needs based on their in-depth knowledge of their territory, and leave 

us comments. It is also an opportunity to identify the improvements needed to guarantee an optimal 

experience for future users.  

In the spring of 2022, an initial cartographic representation of the indices with 2016 Canadian census data 

was completed (2021 data was not yet available) and two prototype versions were created. For the first 

version, the sensitivity and exposure indices were integrated into the prototype for the Victoria, Windsor, 

Toronto, and Ottawa Census Metropolitan Areas (CMAs), along with a bivariate map of these two indices. 

For the second version, in the summer of 2022 (Victoria CMA only), in addition to the layers mentioned 

above, a layer representing the proportion of children (≤ 4 years) and elderly (≥ 65 years) was integrated, 

since 2021 census data was available for these variables. 

The following widgets have been integrated: zoom, select, default map view, search, find my location, layer 

list, legend, basemap library, scale, attribute table and pop-up window. A special feature of the prototype is 
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the integration of the editor widget, which allows users to create polygons in a sector of their city or region 

on the map and add a comment to identify an area that seems problematic, or simply to write a comment or 

a question.  

4.4.2 Evaluation of the Tool by Local Stakeholders  

When the tool was evaluated by local stakeholders, two components were implemented. The first 

component involved a series of interviews with representatives from the cities of Ottawa, Windsor, 

Toronto, and Victoria. The second component of the assessment was carried out in collaboration with the 

City of Victoria and the Capital Regional District. In the spring, a presentation of the prototype was made 

to a larger group, followed by the availability of the tool for the summer season, and a survey was carried 

out in the fall to assess its relevance. 

4.4.2.1 Interviews with Stakeholders from the Cities of Windson, Toronto, Ottawa and 

Victoria 

From April 8 to May 2, 2022, we met with stakeholders from four major Canadian cities in the study area 

covered by the project (Ottawa: three stakeholders, Windsor: one stakeholder, Victoria: five stakeholders, 

and Toronto: one stakeholder). At least one stakeholder per city had been previously contacted in the 

summer of 2021. The stakeholders were chosen for their in-depth knowledge of their city and the realities 

related to heat island and heat wave management. 

4.4.2.1.1 Objectives 

The general objective of the interviews was to discuss with the community stakeholders who the potential 

users of the cartographic tool would be. The objectives of the meetings were:   

• Evaluate whether our indices (sensitivity and exposure) represent the reality experienced in their 

city.  

• Evaluate the user-friendliness of our cartographic tool (use of the different layers of information, 

use of pop-up windows to see the values of the variables included in our indices).  

• Understand how the cartographic tool will assist stakeholders in their field interventions, their 

projects, and their heat wave management, and whether it meets their needs.   

4.4.2.1.2 Interview Methodology 

The interviews with the stakeholders were conducted in the form of open discussions, as the team wished 

to foster an inductive approach to data collection and analysis. The inductive approach is a bottom-up 

approach prioritizing data and lived experience, while the analysis framework is built as the project 
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progresses. The same questions were asked at each meeting. The interviews were recorded with the Teams 

(3) or Zoom (1: Windsor) software. They were transcribed using the Word dictation tool and were checked, 

ordered, and manually corrected in their entirety.  The City of Toronto also sent comments through our 

cartographic tool (editor widget) and the City of Ottawa sent a list of comments after the meeting. In total, 

six documents make up the corpus of information covered by the current thematic analysis (four interview 

transcripts and two comment files). The qualitative thematic analysis of the text was performed using the 

NVivo software version 1.6.1 (QSR International). The entire text was coded, and a hierarchical node 

structure was used to encode the material (14 parent nodes (themes) and 49 child nodes (sub-themes)).  

Apart from our questions, the interventions of both the participants from the four cities and our team from 

Université Laval were coded. Since these were open discussions, much of the information would have 

been lost if the text from our team had not been coded. However, the text was coded in two separate files 

and the results were divided into several categories: suggestions from the stakeholders, assessment of the 

representation of reality in the field, and general comments from the city stakeholders only.  

A thematic analysis of the information drawn from the interviews was conducted. The results were divided 

into two categories: the assessment of the format and content of the cartographic tool, and the main themes 

addressed during the interviews. 

4.4.2.1.3 Results 

Assessment of the format and content of the cartographic tool  

All of the main themes relating to the format and content of the cartographic tool (access to project 

materials, indices and methodology, model and limits, cartographic representation of the ecumene, feedback 

and evaluation of the cartographic tool, stakeholders’ suggestions, interface users, use of the cartographic 

interface, and general comments) were addressed by stakeholders of the four participating cities, while 25 

out of 34 subthemes were addressed by at least three of the four major cities (Table 40).  

Access to Project Materials 

The question regarding the access to project materials was mentioned several times (47). Several questions 

were of a general nature (13), others were more specific such as the access to the cartographic tool (13), to 

the raw data, and to our methodology (21). The stakeholders would like to have access to the raw data and 

the methodology to integrate one or more of our indices into their own cartographic software, into their 

regional or local study of heat waves, or to add more specific data to our indices that we were unable to 

incorporate on a national scale.  
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Indices and Methodology 

A significant portion of the interviews was used to discuss the project’s indices and methodology, which 

were mentioned 122 times. The stakeholders had many questions about the variables included in the 

sensitivity (45 mentions) and exposure (45 mentions) indices, and the multivariate data analyses that were 

performed to create them. The coping capacity index that was being developed was also mentioned 10 

times. There were also 22 mentions concerning the indices and the methodology in general.  

Model and Limits  

The theme of the model and its limits was discussed 77 times. The following sub-themes were often 

mentioned: the absence of data on the air conditioning of housing units in the vulnerability index (7), the 

absence of data on the effects of bodies of water in the exposure index (6), the delays related to the release 

dates of the 2021 census data by Statistics Canada (14), the representation of the heterogeneity of the study 

area in the model (1), the language used for the tool and the methodological documents (12), the use of 

Statistics Canada dissemination areas as unit boundaries for the indices (14), the variables included in the 

model (7), and the areas not covered by the indices (16).  

Cartographic Representation of the Ecumene 

The cartographic representation of the ecumene was mentioned 16 times. This is an important theme since 

we use Statistics Canada’s dissemination areas as unit boundaries, which can lead to inconsistencies when 

a large part of the unit is in an industrial zone, for example. The subject was addressed in all four interviews 

and the ecumene map layer will be added to the tool this year.  

Feedback and Evaluation of the Cartographic Tool 

Feedback and evaluation of the cartographic tool was one of the main objectives for this interview phase 

and was addressed 85 times. The stakeholders in the four cities assured us that our indices covered their 

entire region and more. There were 11 mentions of this subject. The usefulness of the tool (6 mentions) and 

its sustainability (2 mentions) were also discussed. The representation of the reality in the field was 

mentioned 61 times. Of these, 46 mentioned an accurate representation of reality. On 11 occasions, the 

stakeholders questioned the representation of the reality in the field in relation to the index, but this was 

rather due to a lack of knowledge of field data on their part at this precise analysis scale and not a 

misrepresentation of reality. On only four occasions, the stakeholder did not believe that it was a good 

representation of reality, and only for a very specific sector of the city. However, at the scale of the city or 

even neighbourhoods, all the stakeholders found that our indices seemed to be in line with their vulnerability 

and exposure knowledge of the city.   
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Stakeholder Suggestions 

The stakeholders suggested several ideas during this interview phase (27 mentions). Twelve technical 

suggestions were counted. These included the addition of a variable to our model, such as the use of air 

conditioning. The stakeholders also mentioned ideas for alternative uses of the tool on 15 occasions, such 

as identifying the best place to install a water fountain in a public area, where to prioritize tree planting, or 

using the vulnerability index to improve socio-environmental equity in their city.  

Interface Users 

The stakeholders with whom we spoke to come from a variety of backgrounds, although most of them had 

public health connections. During the interviews, the specialization of several potential interface users was 

mentioned: land use planning (7), environment and climate change (8), equity, diversity and inclusion (5), 

heat wave response planning (3), public health (17), and others (4). It was also mentioned on several 

occasions that the public would benefit from access to this cartographic tool.  

Use of the Cartographic Interface 

We counted 66 mentions of the use of the cartographic interface, 10 general mentions, 21 concerning the 

use of the comment tool, 14 concerning the use of the various layers representing the indices, and 21 

concerning the use of the pop-up windows. The stakeholders greatly appreciated the presence of pop-up 

windows presenting the index calculation results and the variables included in them. Although the comment 

tool was mentioned several times, only the stakeholder from the City of Toronto used it to send us 

comments.  

General Comments 

Finally, although an “emotion analysis” (the assessment of emotions, attitudes, and opinions) was not 

carried out in NVivo, a sub-category of encoding was created (positive general comments from stakeholders) 

and it contains 54 mentions. Overall, general comments from the stakeholders were from very positive for 

the four cities interviewed, and no negative comments were made.  
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Table 40: Results of the Qualitative Analysis of the Texts (Evaluation of the Form and the Content of the Mapping 

Tool) 

 

Themes covered Number of 
mentions during 
the interviews 

Number of 
cities that 
addressed the 

theme 

Access to project materials 47 4 
General (access to project materials) 13 4 
Use of the map interface 13 4 

Use of the raw data and methodology  21 4 

Indices and methodology 122 4 
General (indices and methodology) 22 4 
Sensitivity index 45 4 

Exposure index 45 4 
Coping capacity index 10 2 

Model et limits 77 4 

Lack of data on air conditioning  7 2 
Lack of data on water bodies  6 2 
Publication date of the census data 14 3 

Heterogeneity of the area 1 1 
Tool and document language 12 3 
Use of the Das of Statistic Canada as unit limits 14 4 

Variables included in the model 7 4 
Areas not covered by the indices 16 4 

Cartographic representation of the ecumene 16 4 

Mapping tool feedback and evaluation 85 4 

Coverage of the stakeholders’ area 11 4 
Utility of the tool 6 3 
Tool durability  2 1 

Representation of the reality on the field  (61) 4 

Good representation  46 4 
Questions about the representation  11 3 
Misrepresentation  4 2 

Stakeholder suggestions 27 4 

Technical suggestions 12 3 
Alternative uses of the tool and project data 15 4 

Tool users 44 4 

Land use planning 7 4 
Environment and climate change 8 4 
Equity, diversity, and inclusion 5 2 

Heat wave response planning 3 2 
Public health 17 4 
Other 4 3 

Use of the map interface 66 4 

General (use of the map interface) 10 4 
Use of the comment tool 21 3 

Use of the different layers 14 4 
Use of the pop-up windows 21 4 

General positive comments 54 4 
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4.4.2.1.3.1 Main Themes Addressed in the Interviews 

Just like in the previous section, the five main themes (environmental equity, affected populations, 

heatwaves and heat islands, building vulnerability, and land vulnerability) were addressed by the various 

stakeholders. Thirteen of the sub-themes were addressed by at least two cities (Table 41).  

With regards to environmental equity, although addressed by all cities (13 mentions) it was particularly 

important to the stakeholders from the City of Victoria, who seemed to attribute a more social perspective 

to their new heat wave action plan. In terms of the populations concerned (53 mentions), underprivileged 

populations were mentioned most often during the interviews (15 mentions), followed by the general 

populations (13), newcomers (12), the elderly (6), affluent individuals (6), and children (1). Heat waves 

and heat islands were mentioned on 34 occasions, and for the majority of these (25), the stakeholders 

talked about them in general terms; however, on 4 occasions they referred more specifically to adaptation 

and mitigation strategies, on 3 occasions to future heat waves, and on 2 occasions to past heat waves. 

Building vulnerability was discussed on 30 occasions. Densely populated neighbourhoods (11 mentions), 

apartments and high-rise buildings (9 mentions), building age (6 mentions), building air conditioning (3 

mentions), and roof albedo (1 mention) were the sub-themes in this category. Finally, the theme of land 

vulnerability was discussed 31 times during the interviews or through stakeholder comments. For 

example, the lack of green spaces or the high proportion of impervious surfaces were coded in this 

category. 
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Table 41: Results of the Qualitative Analysis of the Texts (Major Themes Covered) 

Themes covered  Number of mentions 

during the 
interviews 

Number of cities that 

addressed the theme 

Socio-environmental equity 13 4 

Concerned populations 53 4 

Disadvantaged people 15 2 

General population 13 4 

Newcomers 12 3 

Elderly people 6 3 

Affluent people 6 2 

Children 1 1 

Heat waves and heat islands 34 4 

General (heat waves and heat islands) 25 4 

Adaptation and mitigation strategies 4 2 

Heat waves (future) 3 2 

Heat waves (past) 2 2 

Building vulnerability 30 4 

Densely populated neighbourhoods  11 3 

Apartment buildings and towers 9 4 

Building age 6 3 

Building air conditioning 3 2 

Roofing and albedo 1 1 

Area vulnerability 31 4 

 

4.4.2.1.3.2 Feedback and Suitability of the Solution for the Needs Expressed by Users 

The feedback from the stakeholder interviews from the cities of Ottawa, Windsor, Victoria, and Toronto 

was very positive. The feedback was also very encouraging regarding our vulnerability and exposure 

indices. According to the stakeholders, the indices appear to represent the reality in the four major cities. 

When it came to assessing the user-friendliness of the cartographic tool (use of different information 

layers and pop-up windows to view the variable values included in our indices), the stakeholders seemed 

satisfied with the web interface created. In terms of whether the cartographic tool will be able to help 

stakeholders in their field interventions, heat wave management, and whether the prototype of the tool did 

indeed meet their needs, the feedback was also very positive. The stakeholders mentioned several times 

the tool’s usefulness and the different uses they could make if it in the future. The free access to the data 

and to the team’s work was a very positive point. It also seemed very important not only to make the 

cartographic tool accessible to the public and local stakeholders, to easily visualize the vulnerability of 

the study area using the maps, but also to make the data and methodology available. As mentioned above, 

the stakeholders want to have access to the raw data to integrate one or more of their own indices into 
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their own cartographic software or regional or local heat wave study, or to add more precise data to our 

indices. This way, they will be able to better target the interventions they need to make in their city to 

mitigate the heat wave effects for the concerned populations: white roofs, park development, addition of 

municipal swimming pools, etc.  

Finally, several of the steps taken later in the project succeeded in responding to certain requests or 

questions from the stakeholders. For example, the addition of a dasymetric map layer to represent the 

ecumene and the addition of the coping capacity index in the model to increase the available information 

on the city’s socio-environmental inequalities. Moreover, the 2021 census data was used, which was not 

available at the time of the prototype, and the methodological documents were translated into English to 

help stakeholders understand our project methodology.  

4.4.2.2 Use of a Prototype in the Summer 2022 by the City of Victoria and Capital Regional 

District 

During the spring 2022 interviews, the City of Victoria showed great interest in our project and cartographic 

tool following the major heat wave that hit British Columbia in the summer of 2021 that resulted in 619 

deaths. Given their needs and interest, it was agreed that the City of Victoria and the Capital Regional 

District could test the tool prototype in the summer of 2022. To this end, an ArcGIS Online interface was 

created (see section 4.4.1).  

To introduce the prototype and the project, a meeting was held with around 25 stakeholders from the City 

of Victoria, the Capital Regional District, and the University of British Columbia. The stakeholders came 

from a variety of backgrounds: land use planning, public health, regional emergency management 

partnership, municipal emergency management program, climate action program and climate adaptation 

planning, housing planning program, department of transportation and sustainable transportation planning, 

office of equity, diversity and inclusion, stormwater management and green infrastructure, community 

planning, urban forestry services, and UBC’s Institute for Resources, Environment and Sustainability.  

4.4.2.2.1 Objectives 

The meeting objective was not only to present the cartographic tool prototype, but also to answer questions 

about the tool, the methodology, and the project, and to collect information on the reliability and user-

friendliness of the interface from stakeholders who will use the final version in 2023. The prototype of 

the cartographic tool with explanatory documents was sent to stakeholders a few days before the meeting 

so that they could go through them.  



 

86 
 

In exchange, they agreed to complete a survey in the fall of 2022 to give us their opinions and comments, 

in order to evaluate and improve the prototype before the final version is released in the spring of 2023.  

4.4.2.2.2 Results 

The survey was published in English using the ESRI tool, Survey 123. The stakeholders had 10 days to 

complete it. It consisted of 16 questions and 13 people responded, about half of the stakeholders present 

at the June 13 meeting. Eleven respondents work for the City of Victoria and 2 work for the Capital 

Regional District. The respondents work in various sectors : climate action program and climate 

adaptation planning (3 respondents, 31%), housing planning program (1 respondent, 8%), community 

planning (3 respondents, 23%), office of equity, diversity and inclusion (3 respondents, 23%), land use 

planning (2 respondents, (15%), stormwater management and green infrastructure (1 respondent, 8%), 

and geographic information system (GIS) (1 respondent, 8%). This question was a multiple-choice 

question, where respondents could indicate that they worked in more than one sector. As a result, there 

are 15 entries.  

Five people replied that they had used the cartographic tool during the summer period as part of their 

work. Three people had used it once, one person 2-3 times, and one person more than 10 times. Moreover, 

80% of those who used the tool said it was useful or very useful in their work. The cartographic tool was 

used in anticipation of a heat wave or during a heat wave on one occasion, and for another reason on three 

occasions. The alternative reasons listed for the use of the tool by the stakeholders are: 

• General interest in shelter mapping  

• Urban planning as a teaching tool  

• To enrich personal knowledge   

• Climate adaptation planning  

• As a basis for localized work on local temperatures  

Eight stakeholders consulted the summary report as part of their work. According to 75% of them, it 

answered most or all of their questions. The stakeholders left comments to help us refine the summary 

report in preparation for the final version in the spring of 2023. Among other things, they wanted more 

information on data sources and the limitations of the methodology, and the addition of simple graphics 

to illustrate key points. Only 1 of 13 respondents had downloaded the geospatial files, and none had 

integrated them with other maps.  

One of the main points of the stakeholder consultation process was to find out whether our indices are 

representative of the reality. With regards to this question, 77% of the respondents said that the 

information represented on the maps was moderately to very representative of the reality in their 
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neighbourhood, city, or region. However, in the comments, some mentioned that they did not have enough 

knowledge of the reality at this scale to be able to answer this question properly. Finally, the stakeholders 

left many comments, notably on the functionalities and improvements they would like to see. 

4.4.2.2.3 Use of the Cartographic Tool Prototype 

The online prototype of the mapping of the vulnerability and exposure to extreme heat waves of 

populations in the Victoria census metropolitan area was consulted 257 times between the beginning of 

May and the end of September (Appendix 2).  

4.5 DEVELOPMENT OF A FINAL VERSION OF THE APPLICATION 

4.5.1 Mapped Layers 

A total of six geospatial data layers (sensitivity, coping capacity, vulnerability, exposure, 

vulnerability/exposure, and urban heat islands) have been mapped and implemented in the ExB application, 

where it is possible to view just one of these maps at a time or, in “2-map” mode, to view the bivariate 

vulnerability/exposure map with the urban heat island map simultaneously. In the “2-map” mode, the map 

view is synchronized to facilitate exploration and comparison of the two data layers.  

4.5.2 Selected Features 

The widgets integrated into the final version of the application have been chosen to enhance the user 

experience, enabling them to better understand the data represented and helping them get the information 

they are looking for as quickly and efficiently as possible. We had to keep in mind the two separate 

audiences for this application and ensure that it was user-friendly for all potential users. 

Table 42 describes the use of each widget, while Table 43 shows the widgets available for different types 

of computing devices (computer, tablet or phone).  
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Table 42: Description of How to Use the Selected Widgets for the Final Version of the Mapping Application. 

Widget Use 

Zoom (buttons 

and tactile)  

 

Adjust the map scale to display the desired details.  

Default map 

view  

Return to the default map view. For the current project, we see our entire study, so 

most of Canada is visible.   

Find my location 

 

Detects the user’s location and zooms to their area.  

Legend Explains the meaning of the colours on the map for the different maps produced. 

Scale Gives an idea of the ratio between the distance measured on the map and the real 

distance on the ground. It is displayed in kilometres and miles.    

Search  
Allows the user to find a specific city, location, or address by entering one or 

more words in the text box to find an address faster than by browsing the map.  

Basemap  
Presents different basemap options that can be selected to accompany the layers 

produced for the project, for example: imagery or topographic.  

Print  
Allows you to create a map in a JPG format representing the chosen cartographic 

extent that can be saved on the user’s computer or tablet and later printed.  

All maps (map 

list) 

Allows the user to select one of more maps 

Navigation help 

 

Brings the users to a help section. This section is available for each type of device 

(computer, tablet, and telephone) and explains how the various widgets integrated 

in the map application work.  

Pop-up window Provides additional information on the variables and the indices for each 

dissemination area for the sensitivity, coping capacity, vulnerability, exposure, and 

vulnerability/exposure maps.  
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Table 43: Available Widgets According to Different Types of Computing Devices 

 Type of support 

Computer Tablet Telephone 

W
id

g
e
ts

 

Zoom in  and Zoom out  X   

Tactile zoom  X X 

Default map view  X X X 

Find my location  X X X 

Legend X   

Layers (Layers and Legend)   X X 

Scale X X  

Search  X   

Basemap  X X X 

Print  X X  

All maps X X X 

Navigation help  X X X 

Pop-up window X X X 

4.6 WEBSITE 

The thematic content populating the various sections of the website was developed by our team. 

Considering that users of the solution are not necessarily familiar with the scientific terminology used to 

describe the various concepts and methods employed in the project, a special effort was made to popularize 

the content. The main sections of the website are as follows: 

Map: This is the home page of the website. It provides direct access to the mapping application and to a 

video explaining the impact of heat waves on the health of Canadians.  

Project: This page contains textual information on the impacts of heat waves on population health, the 

objectives of the research project, the area covered by the analyses, and information on the project’s partners 

and funding sources. It also includes a video popularizing the problem of heat waves and urban heat islands. 

Methodology: This page contains textual information on the main methodological steps involved in 

mapping vulnerability and exposure. There are also brief descriptions of the methodological approaches 

used to calculate the coping capacity, exposure, sensitivity, and vulnerability indices. It also includes a video 

popularizing the mapping process. 
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Extraction: This page allows users to download geospatial files containing the various indicators and 

indices for Canada’s 156 urban regions and for each of the provinces. The downloadable compressed files 

contain a geodatabase including a raster file and a vector file, along with a PDF metadata file describing 

the data in detail. Users can download data using a drop-down menu or a dynamic map. 

Navigation Help: This page describes the various widgets and functionalities available in the map 

applications depending on whether the site is consulted using a computer, tablet, or smartphone.  

Team: This page lists all the people involved in developing the solution—professors, professionals, and 

students. In addition to listing these people, their photos are displayed along with the expertise they brought 

to the project and how they can be reached (email, LinkedIn, ResearchGate). 

Contact: This page provides information on how to contact the research team. Users can also write to the 

team using a contact form embedded in the page. 

Frequently Asked Questions (FAQ): This page contains additional information on the various dimensions 

of the issues addressed by the team (e.g., What is a heat wave?), project dimensions (e.g., How did you 

create the heat island map?), how the mapped information should be used (e.g., Why should I find out about 

vulnerability in my neighbourhood?), or certain concepts raised by the team (e.g., What is vulnerability?). 

This information takes the form of a question-and-answer text. 

Useful Links: This page includes URL links to external resources in English and French. These include 

information on heat waves, urban heat islands, adaptation measures, health impacts, Canadian alert systems, 

and climate change.  

A menu in a banner at the top of the website provides access to each page. The colour of the website also 

varies according to the time of day, switching to dark mode at dusk and to light mode at sunrise. Site visitors 

can switch from one mode to another at any time by pressing an icon at the top of the screen. It is also 

possible to switch from the French to the English version, and vice versa, by pressing a button at the top of 

the screen. 

4.7 CONCLUSION 

The ultimate objective of the project was not only to produce a mapping tool, but also to ensure that it was 

adapted to the needs of its users (planners, public health professionals and elected representatives, but also 

the general public). Particular attention was paid to the evaluation of the tool by informed users during its 
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development. The team met with planning and public health professionals. It also evaluated the mapping 

interface by presenting them with a prototype. In addition, these meetings provided an opportunity to assess 

whether the indices accurately represented the reality of their territory and to learn more about how the 

mapping tool will meet the stakeholders’ needs. 

The team had to make technological choices that would enable them to produce an interactive mapping tool 

with features that would facilitate website navigation, while at the same time favouring updates and the 

tool’s durability.  
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5 GENERAL CONCLUSION 

The conclusion of our scientific report highlights the results of our project aiming to develop an online 

interactive map for the analysis of the vulnerability and the exposure to extreme heat waves in major 

Canadian cities. Our main objective was to create a tool used for prevention and intervention by municipal 

actors and help them better understand at-risk areas and take appropriate action. To this end, we set three 

specific objectives. 

The first specific objective was to identify the needs of municipal managers, professionals, and planners in 

terms of extreme heat exposure and vulnerability mapping. We then interviewed potential users to identify 

their needs and concerns. An analysis of the issues and needs identified by the municipal actors then served 

as a guide in the development of the mapping application.  

Our second specific objective was to construct a set of mappable indices representing the various 

dimensions of vulnerability and exposure to extreme heat waves. We created a heat wave sensitivity index, 

a coping capacity index, an exposure index, and a vulnerability index. The indices were only mapped for 

the inhabited areas of major Canadian cities, which involved dividing the dissemination blocks based on a 

file representing the ecumene of the country’s entire inhabited area and applying a dasymetric mapping 

procedure. 

The third specific objective was to produce an interactive online map incorporating the indices. We then 

launched a website with an interactive mapping application (heatwaves.ffgg.ulaval.ca/ 

vaguesdechaleur.ffgg.ulaval.ca) including the different layers of geospatial data produced by the research 

team. The geospatial data can be downloaded directly on the website. The information on the website will 

provide users with a clear picture of the issues surrounding urban extreme heat waves and the methodology 

used by the team. 

In conclusion, we hope this project will help municipal actors in their work and that the mapping application 

will be helpful for everyone living in a major Canadian city. We believe that the methodological approaches 

used could be applicable to other scientific projects and that the results obtained can be used for other 

similar contexts. 
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7 APPENDICES 

7.1 APPENDIX 1: LIST OF 156 MAPPED CMAS AND CAS 

Table 44: Complete Table of the CMAs/CAs per Province 

Urbans regions (CMA/CA) Types of urban 

area 

Provinces Population 

in 2021 
Abbotsford - Mission CMA British Columbia 195 726 

Alma CA Quebec 30 331 

Amos CA Quebec 18 873 

Baie-Comeau CA Quebec 26 643 

Barrie CMA Ontario 212 856 

Bathurst CA New Brunswick 31 387 

Belleville - Quinte West CMA Ontario 111 184 

Brandon CA Manitoba 54 268 

Brantford CMA Ontario 144 162 

Brockville CA Ontario 31 661 

Brooks CA Alberta 14 924 

Calgary CMA Alberta 1 481 806 

Campbell River CA British Columbia 40 704 

Campbellton (New Brunswick part) CA New Brunswick 11 986 

Campbellton (Quebec part) CA Quebec 1344 

Camrose CA Alberta 18 772 

Canmore CA Alberta 15 990 

Cape Breton CA Nova Scotia 98 318 

Centre Wellington CA Ontario 31 093 

Charlottetown CA Prince Edward Island 78 858 

Chatham-Kent CA Ontario 104 316 

Chilliwack CMA British Columbia 113 767 

Cobourg CA Ontario 20 519 

Collingwood CA Ontario 24 811 

Corner Brook CA Newfoundland and Labrador 29 762 

Cornwall CA Ontario 61 415 

Courtenay CA British Columbia 63 282 

Cowansville CA Quebec 15 234 

Cranbrook CA British Columbia 27 040 

Dawson Creek CA British Columbia 17 878 

Dolbeau-Mistassini CA Quebec 15 306 

Drummondville CMA Quebec 101 610 

Duncan CA British Columbia 47 582 

Edmonton CMA Alberta 1 418 118 

Edmundston CA New Brunswick 22 144 
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Elliot Lake CA Ontario 11 372 

Essa CA Ontario 22 970 

Estevan CA Saskatchewan 12 798 

Fort St. John CA British Columbia 28 729 

Fredericton CMA New Brunswick 108 610 

Gander CA Newfoundland and Labrador 13 414 

Granby CA Quebec 90 833 

Grand Falls-Windsor CA Newfoundland and Labrador 13 853 

Grande Prairie CA Alberta 64 141 

Greater Sudbury CMA Ontario 170 605 

Guelph CMA Ontario 165 588 

Halifax CMA Nova Scotia 465 703 

Hamilton CMA Ontario 785 184 

Hawkesbury (Ontario part) CA Ontario 10 194 

Hawkesbury (Quebec part) CA Quebec 1816 

High River CA Alberta 14 324 

Ingersoll CA Ontario 13 693 

Joliette CA Quebec 52 706 

Kamloops CMA British Columbia 114 142 

Kawartha Lakes CA Ontario 79 247 

Kelowna CMA British Columbia 222 162 

Kenora CA Ontario 14 967 

Kentville CA Nova Scotia 26 929 

Kingston CMA Ontario 172 546 

Kitchener - Cambridge - Waterloo CMA Ontario 575 847 

Lachute CA Quebec 14 100 

Lacombe CA Alberta 13 396 

Ladysmith CA British Columbia 15 501 

Lethbridge CMA Alberta 123 847 

Lloydminster (Alberta part) CA Alberta 19 739 

Lloydminster (Saskatchewan part) CA Saskatchewan 16 769 

London CMA Ontario 543 551 

Matane CA Quebec 18 474 

Medicine Hat CA Alberta 76 376 

Midland CA Ontario 27 894 

Miramichi CA New Brunswick 27 593 

Moncton CMA New Brunswick 157 717 

Montréal CMA Quebec 4 291 732 

Moose Jaw CA Saskatchewan 34 872 

Nanaimo CMA British Columbia 115 459 

Nelson CA British Columbia 19 119 

New Glasgow CA Nova Scotia 34 397 

Norfolk CA Ontario 67 490 



 

105 
 

North Battleford CA Saskatchewan 19 374 

North Bay CA Ontario 71 736 

Okotoks CA Alberta 30 405 

Orillia CA Ontario 33 411 

Oshawa CMA Ontario 415 311 

Ottawa - Gatineau (Ontario part) CMA Ontario 1 135 014 

Ottawa - Gatineau (Quebec part) CMA Quebec 353 293 

Owen Sound CA Ontario 32 712 

Parksville CA British Columbia 31 054 

Pembroke CA Ontario 23 814 

Penticton CA British Columbia 47 380 

Petawawa CA Ontario 18 160 

Peterborough CMA Ontario 128 624 

Port Alberni CA British Columbia 25 786 

Port Hope CA Ontario 17 294 

Portage la Prairie CA Manitoba 13 270 

Powell River CA British Columbia 17 825 

Prince Albert CA Saskatchewan 45 718 

Prince George CA British Columbia 89 490 

Prince Rupert CA British Columbia 13 442 

Québec CMA Quebec 839 311 

Quesnel CA British Columbia 23 113 

Red Deer CMA Alberta 100 844 

Regina CMA Saskatchewan 249 217 

Rimouski CA Quebec 53 944 

Rivière-du-Loup CA Quebec 30 025 

Rouyn-Noranda CA Quebec 42 313 

Saguenay CMA Quebec 161 567 

Saint John CMA New Brunswick 130 613 

Sainte-Agathe-des-Monts CA Quebec 19 892 

Sainte-Marie CA Quebec 13 134 

Saint-Georges CA Quebec 34 833 

Saint-Hyacinthe CA Quebec 59 980 

Salaberry-de-Valleyfield CA Quebec 42 787 

Salmon Arm CA British Columbia 19 705 

Sarnia CA Ontario 97 592 

Saskatoon CMA Saskatchewan 317 480 

Sault Ste. Marie CA Ontario 76 731 

Sept-Îles CA Quebec 27 729 

Shawinigan CA Quebec 49 620 

Sherbrooke CMA Quebec 227 398 

Sorel-Tracy CA Quebec 41 934 

Squamish CA British Columbia 24 232 
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St. Catharines - Niagara CMA Ontario 433 604 

St. John's CMA Newfoundland and Labrador 212 579 

Steinbach CA Manitoba 17 806 

Stratford CA Ontario 33 232 

Strathmore CA Alberta 14 339 

Summerside CA Prince Edward Island 18 157 

Swift Current CA Saskatchewan 18 745 

Sylvan Lake CA Alberta 16 514 

Terrace CA British Columbia 19 606 

Thetford Mines CA Quebec 28 287 

Thompson CA Manitoba 13 035 

Thunder Bay CMA Ontario 123 258 

Tillsonburg CA Ontario 18 615 

Timmins CA Ontario 41 145 

Toronto CMA Ontario 6 202 225 

Trail CA British Columbia 14 268 

Trois-Rivières CMA Quebec 161 489 

Truro CA Nova Scotia 46 157 

Val-d'Or CA Quebec 34 037 

Vancouver CMA British Columbia 2 642 825 

Vernon CA British Columbia 67 086 

Victoria CMA British Columbia 397 237 

Victoriaville CA Quebec 52 936 

Wasaga Beach CA Ontario 24 862 

Wetaskiwin CA Alberta 12 594 

Weyburn CA Saskatchewan 12 247 

Whitehorse CA Yukon 31 913 

Williams Lake CA British Columbia 23 608 

Windsor CMA Ontario 422 630 

Winkler CA Manitoba 32 655 

Winnipeg CMA Manitoba 834 678 

Wood Buffalo CA Alberta 73 837 

Woodstock CA Ontario 46 705 

Yellowknife CA Northwest Territories 20 340 

Yorkton CA Saskatchewan 19 859 
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7.2 APPENDIX 2: USE OF THE MAPPING TOOL PROTOTYPE BY THE 

CITY OF VICTORIA IN SUMMER 2022 

The online prototype of mapping the vulnerability and exposure to extreme heat waves of 

populations of the census metropolitan of Victoria was viewed 257 times between the beginning of May 

and the end of September (Figure 33). There was a spike in page views in June, around June 13th, the 

meeting date. The tool was available from the beginning of June for stakeholders, which explains the 

number of consultations. There was also a small spike in September during the survey period.  

We can see that the online tool’s traffic is not very important during the summer. This partly due 

to the limited group of people who had access to it and the absence of a major heat waves in British 

Columbia that summer, unlike the summer of 2021, when the province experienced a historic heat wave 

and a new Canadian temperature record had been set in the village of Lytton with a temperature of 49.6 

degrees Celsius. More than 1000 new local daily temperature records had been recorded between the end 

of June and the beginning of July (British Columbia Coroners Service, 2022). Moreover, the online tool 

had not yet been the subject of the communication plan. With this step scheduled for spring 2023.  

 

  

Figure 33: Online mapping tool consultation history  
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7.3 APPENDIX 3: NAVIGATION HELP (COMPUTER VERSION) 

INTRODUCTION TO NAVIGATION   

To move around on the map, hold down the left mouse button and a small hand will appear, allowing you to drag 
and reposition your view by moving the mouse. If you are using the touchpad on your computer, hold down the 
left button and move another finger across the touchpad to achieve the same result.   

The 156 urban areas covered by the project "Mapping the vulnerability and exposure to extreme heat waves" are 
those that appear in light grey with a white border on the map of Canada. By zooming in on the region of your 
choice, the light grey layer will disappear to make way for the heat wave exposure layer.   

You will find in the application a total of six themes:    

• Exposure to heat waves  
• Sensitivity to heat waves  
• Coping capacity to heat waves  
• Vulnerability to heat waves  
• Vulnerability and exposure to heat waves  
• Urban heat islands  

  

ALL MAPS (Nº 1)  

To view the different geographic information layers and change the layer displayed, click on the "All maps" button 
and select the one you are interested in. There are two modes: "1 map" and "2 maps". If you click on the "1 map" 
icon, you will be able to select the one you want to view from the 6 maps.  
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By clicking on the "2 maps" mode, you will be able to view and move around 2 maps simultaneously 
(vulnerability/exposure and urban heat islands).   

LEGEND (Nº 2)  

The legend of the selected layer appears automatically with the "1 map" mode and the name of the layer is at the 
top of the legend.  

In the "2 maps" only the name of the theme appears in order to give more space to the data on the maps. However, 
the legend can be consulted by clicking on the "Layers" button of the respective maps, represented by the icon 
with three horizontal squares superimposed. Once the window is open, click on the word "Legend" to see it 
appear.  

ZOOM (Nº 3)  

You can use the plus and minus symbols to zoom in and out. You can also use the scroll wheel on your mouse to 
do this. If you're using your computer's touchpad, spread two fingers apart to zoom in on a location and bring two 
fingers together to zoom out.  

Each map has an independent zoom in the "1 map" mode, so you have to zoom back to the region of your choice 
if you change the map displayed.  

DEFAULT MAP VIEW (Nº 4)  

Clicking on the house icon will return you to the default map view of Canada.  

FIND MY LOCATION (Nº 5)  

Find my location (target icon) allows the software to detect where you are and then zoom into your area. This tool 
may not work depending on your computer's privacy settings with respect to geolocation.  

SCALE (Nº 6)  

To give you an idea of the relationship between the distance measured on the map and the actual distance on the 
ground, you can check the graphical scale at the bottom left of the map. It is displayed in kilometers and miles.   

SEARCH (Nº 7)  

You can search for a specific location or address using the search tool. By entering one or more words in the text 
box, a drop-down menu will appear with choices. By selecting one of the options and pressing the magnifying glass 
symbol, the tool will zoom in on your search result.  

BASEMAPS (Nº 8)  

The basemaps library presents different options that you can select as a background map. By clicking on the icon, 
a drop-down menu with all the choices will appear. The default basemap for our application is "Imagery Hybrid".  

PRINT (Nº 9)  

The "Print" tool allows you to create a map representing the selected map area and select a layout that can be 
saved to your computer or printed later.   
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By clicking on the printer icon, a drop-down menu with different formats will appear. You must select one and 
then click on the print button. The procedure may take a few seconds. When you see a circle to the left of the map 
name, the operation is in progress. When the little circle turns into a page icon, you can click on it and a new tab 
will appear with your map. To save the map to your computer, right-click on it with your mouse or touchpad and 
a menu will appear with the option “Save Image As”. You can then decide on the name and location of your file. If 
you have an Apple computer, click with two fingers at the same time to bring up the menu.   

If you want to produce a map of a different layer or region, click the “Reset” button to start the process again.   

When you click on the “Preview Print Extents” option, the blue area that appears is the area that will be on your 
map.   

*We are aware that the maps produced do not have a legend, this is a problem out of our control that comes from 
the software that will be adjusted eventually.  

POP-UP WINDOW (Nº 10)  

You can click on a dissemination area on the map and a pop-up window will appear. This window contains 
information about the variables and indices. The "Zoom to" tool at the bottom or top of the window allows you to 
zoom in on the selected polygon.  

*There is no pop-up window for the urban heat island map. 
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7.4 APPENDIS 4: NAVIGATION HELP (TABLET VERSION) 

BEFORE YOU BEGIN  

For the best experience with the online mapping tool, it is recommended that you use a computer rather than a cell 
phone or tablet. The larger computer screen provides a better view of the map, and more functionality is available 
in this format.  

INTRODUCTION TO NAVIGATION  

To begin, you can zoom in by spreading two fingers apart to enlarge the map or by bringing them together to shrink 
it. Then, locate the area you want to explore and place a finger on the screen and drag it up, down, left or right to 
move the map in the desired direction.    

Each map zooms out independently in the "1 map" mode, so you must zoom back in on the area of your choice if 
you change the map displayed.  

The 156 urban areas covered by the project "Mapping the vulnerability and exposure to extreme heat waves" are 
those that appear in light grey with a white border on the map of Canada. By zooming in on the region of your 
choice, the light grey layer will disappear to make way for the heat wave exposure layer.   

You will find in the application a total of six themes:    

• Exposure to heat waves  
• Sensitivity to heat waves  
• Coping capacity to heat waves  
• Vulnerability to heat waves  
• Vulnerability and exposure to heat waves  
• Urban heat islands  

ALL MAPS   

To view the different geographic information layers and change the layer displayed, press on the "All maps" button 
and select the one you are interested in. There are two modes: "1 map" and "2 maps". If you click on the "1 map" 
icon, you will be able to select the one you want to view from the 6 maps.  

By pressing on the "2 maps" mode, you will be able to view and move around 2 maps simultaneously 
(vulnerability/exposure and urban heat islands).   

DEFAULT MAP VIEW   

Pressing on the house icon will return you to the default map view of Canada.  

  

FIND MY LOCATION   

Find my location (target icon) allows the software to detect where you are and then zoom into your area. This tool 
may not work depending on your tablet's privacy settings with respect to geolocation.  
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SCALE   

To give you an idea of the relationship between the distance measured on the map and the actual distance on the 
ground, you can check the graphical scale at the bottom left of the map. It is displayed in kilometers and miles.   

LEGEND  

To access the legend, press on the "Layers" tab, which is represented by three horizontal squares on top of each 
other. A window will open with two menus ("Layer" and "Legend"). Press on the word "Legend" to make it 
appear.  

BASEMAPS   

The basemaps library presents different options that you can select as a background map. By pressing on the icon, 
a drop-down menu with all the choices will appear. The default basemap for our application is "Imagery Hybrid".  

PRINT   

The "Print" tool allows you to create a map representing the selected map area and select a layout that can be 
saved to your tablet or printed later.   

By pressing on the printer icon, a drop-down menu with different formats will appear. You must select one and 
then press on the print button. The procedure may take a few seconds. When you see a circle to the left of the 
map name, the operation is in progress. When the little circle turns into a page icon, you can press on it and a new 
tab will appear with your map.   

If you want to produce a map of a different layer or region, press the “Reset” button to start the process again.   

When you press on the “Preview Print Extents” option, the blue area that appears is the area that will be on your 
map.   

*We are aware that the maps produced do not have a legend, this is a problem out of our control that comes from 
the software that will be adjusted eventually.  

POP-UP WINDOW   

You can press on a dissemination area on the map and a pop-up window will appear. This window contains 
information about the variables and indices. The "Zoom to" tool at the bottom or top of the window allows you to 
zoom in on the selected polygon.  

*There is no pop-up window for the urban heat island map.  
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7.5  APPENDIX 5: NAVIGATION HELP (PHONE VERSION) 

BEFORE YOU BEGIN  

For the best experience with the online mapping tool, it is recommended that you use a computer rather than a cell 
phone or tablet. The larger computer screen provides a better view of the map, and more functionality is available 
in this format.  

INTRODUCTION TO NAVIGATION   

To begin, you can zoom in by spreading two fingers apart to enlarge the map or by bringing them together to shrink 
it. Then, locate the area you want to explore and place a finger on the screen and drag it up, down, left or right to 
move the map in the desired direction.    

Each map zooms out independently, so you must zoom back in on the area of your choice if you change the map 
displayed.  
The 156 urban areas covered by the project "Mapping the vulnerability and exposure to extreme heat waves" are 
those that appear in light grey with a white border on the map of Canada. By zooming in on the region of your 
choice, the light grey layer will disappear to make way for the heat wave exposure layer.   
You will find in the application a total of six themes:    

• Exposure to heat waves  
• Sensitivity to heat waves  
• Coping capacity to heat waves  
• Vulnerability to heat waves  
• Vulnerability and exposure to heat waves  
• Urban heat islands  

ALL MAPS   

To view the different geographic information layers and change the displayed layer, press on the "All maps" button 
and select the one you want to view from the choice of 6.  

LEGEND  

To access the legend, press on the "Layers" tab, which is represented by three horizontal squares on top of each 
other. A window will open with two menus ("Layer" and "Legend"). Press on the word "Legend" to make it appear.  

BASEMAPS   

The basemaps library presents different options that you can select as a background map. By pressing on the icon, 
a drop-down menu with all the choices will appear. The default basemap for our application is "Imagery Hybrid".  

DEFAULT MAP VIEW   

Pressing on the house icon will return you to the default map view of Canada.  

FIND MY LOCATION   

Find my location (target icon) allows the software to detect where you are and then zoom into your area. This tool 
may not work depending on your telephone's privacy settings with respect to geolocation.  
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POP-UP WINDOW   

You can press on a dissemination area on the map and a pop-up window will appear. This window contains 
information about the variables and indices. The "Zoom to" tool at the bottom or top of the window allows you to 
zoom in on the selected polygon.  

*There is no pop-up window for the urban heat island map.  
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